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Abstract

Polychromatic X-ray sources are used universally in computerized tomography to obtain adequate intensity of photons. These sources,

however, can produce some artifacts in the reconstructed image due to non-linearity. Beam-hardening is one such artifact, which

produces false line integrals due the photon-energy dependence of the attenuation co-efficient.

The present investigation deals with the process of estimating the equivalent monoenergetic data, m, from the total attenuation,

p, representing the polyenergetic X-ray beam. Three different specimens are studied which have different geometries.

Simulation results show the effect of beam-hardening and its removal (to a reasonable extent) using polynomial approximation

method recommended by Herman [J Comput Assist Tomograph 1979;3:373]. The results indicate that the algorithm, proposed originally

for medical application applications, is giving encouraging results for non-medical objects though the physical situations are vastly

different. Future work with experimental data for non-medical objects is recommended.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The technique of computerized tomography (CT) has
established itself as a leading tool in diagnostic radiology
over the past 30 years and is catching on fast in non-
destructive evaluation in a variety of situations. In the past,
CT was done by X-rays only, but now other source such as
g-ray, laser and ultrasonic are also used. There has been a
great deal of activity in recent years to find algorithms, that
are fast when implemented on a computer and which
produce acceptable reconstructions in spite of the finite and
inaccurate nature of the data [1].

The measurements in computed tomography can only be
used to estimate the line integrals of the absorption co-
efficient of photons. Inaccuracies in these estimates are due
to the width of the X-ray beam, hardening of the beam,
photon statistics, etc. Radon’s inversion formula is
sensitive to these inaccuracies [2].

When an X-ray beam passes through the material, its
attenuation at any point depends on the material at that
e front matter r 2006 Elsevier Ltd. All rights reserved.
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point and on the energy distribution (spectrum) of the
beam. A difficulty arises due to the fact that the X-ray
beam used in computed tomography consists of photons at
different energies. The attenuation at a fixed point is
generally greater for photons of lower energy and the
energy distribution (spectrum) of the X-ray beam changes
(hardens) as it passes through the material. X-ray beam
reaching a particular point inside the material from
different directions are likely to have different spectra
(having passed through different materials before reaching
the point of interest) and thus will be attenuated differently
at that point. This makes it difficult to assign a single value
for the attenuation coefficient at that point inside the
material.

1.1. The problem of beam-hardening

The aim of computed tomography is to obtain informa-
tion regarding the nature of material occupying exact
positions inside the object. In computed tomography we
have two sets of measurements:
(i)
 calibration measurements, on which we can base an
estimate of what the detector measurements would be if
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the object to be reconstructed is not between the source
and the detector; and
(ii)
 actual detector measurements with the object of
interest in position.
Fig. 1. Outline of the mathematical and computational procedures in CT.
The region, referred to as reconstruction region, is
occupied by some homogeneous reference material, (such
as air or water) during the calibration measurement).
During the actual measurement, the object of interest is
inserted into the reconstruction region, (partially) replacing
the reference material. It is an important restriction that
the object of interest does not occupy any point outside the
reconstruction region.

Suppose that we have a monoenergetic X-ray source
with photon energy ē. For a fixed source and detector pair,
let Cm be the calibration measurement, and let Am be the
actual measurement. We can define monochromatic ray
sum, m, for this beam by

m ¼ � ln
Am

Cm

� �
(1)

and we refer to the set of m’s for all source and detector
pair positions as the monochromatic projection data. In
practice, the X-ray beam is polychromatic. Let Cp and Ap

denote calibration and the actual measurement, respec-
tively. We can define polychromatic ray sum, p, for this
beam by

p ¼ � ln
Ap

Cp

� �
. (2)

We refer to the set p’s for all source–detector pair positions
as the polychromatic projection data.

The problem of beam-hardening is that for any
source and detector pair we can obtain p, but reconstruc-
tion procedure requires m as per Eq. (1). Beam-hardening
results in false gradients of the linear attenuation
coefficients in the CT cross section images, indicating
a non-existent density or composition gradient in the
imaged object. Correction for beam-hardening effect is
a must for interpreting CT images. For a given total
attenuation of polyenergetic X-ray beams through the
object, one has to estimate the total attenuation of
monoenergetic X-ray beams through the same parts
of the object which are precise enough for useful
reconstruction of the monoenergetic linear attenuation
coefficients in the material object. The mathematical and
computational procedures in CT imaging are summarized
in Fig. 1.
2. Theoretical formulation

In this section, the computational and mathematical
procedures underlying the data collection, image recon-
struction, formula for polyenergetic radiation and image
display used in the CT are discussed.
2.1. Preliminaries

The number of counts of photon after passing through a
curve ‘c’ in the material being tested is given by

N ¼ N0 exp �

Z
C

mðr;fÞdl

� �
, (3)

where the integration is along the chord length of ‘c’, N is
the number of photon counts after traversing the chord
length, N0 is the initial photon counts and m is the
attenuation coefficient. Since m depends on the material
and the energy of the radiation, a distribution of m is a
direct indicator of the material composition of the
component being studied.
Eq. (3) can be written as

ln
N

N0

� �
¼

Z
C

mðr;fÞdl ¼ pðs; yÞ, (4)

where pðs; yÞ is called the projection data for the
tomographic algorithm, and it is the integral of the
function along the line specified by s and y (Fig. 2).
The aim of tomography is to reconstruct the function

mðr;fÞ, if a set of several p-values ðpðs; yÞÞ measured along
various chords ðcÞ is given. This is the fundamental
problem of CT and CBP has been used in the present
study for that purpose. The m values can be suitably
normalized to get the material density distribution, if so
desired.

2.2. Data collection mode

The image processing methodology requires attenuation
data to be collected by an array of radiation detectors for
the reconstruction of the function mðr;fÞ . In this study the
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Fig. 2. Parallel-beam data collection geometry.
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mode of collection is the parallel beam geometry (PBG)
mode (Fig. 2). This system consists of several pairs of
radiation source and radiation detector, which can scan the
object completely. The SD (source detector) pairs are
spaced uniformly and the object can be rotated to get the
data for different views. The line SD represents the path of
the data ray or the chord along which the function pðs; yÞ
can be found out. The perpendicular distance from the
center of the object to the path of the ray is denoted by s.
The object table is rotated to get several sets of ‘p’ for
different values of y.

Typical values of the number of rays and the number of
projections used in the present work are 100 and 100. The
source–detector system is moved pixel by pixel, thus
generating a grid of 100� 100 over the physical region of
interest.

2.3. CBP algorithm

Convolution backprojection (CBP) algorithm has been
described in great detail by Herman [1]. In this section we
review CBP briefly as reported earlier by Munshi [3].

Fig. 2 shows the data collection geometry for a parallel
beam CT scanner. The object function, mðr;fÞ, denoted for
generality by f ðr;fÞ in subsequent equations, is represented
by a unit circle and one (of many) data rays is represented
by SD. The ray indices are S and y, where S is the
perpendicular distance of the ray from the object center,
and y is the angle of the source position (or object
rotation). The CT data denoted by pðs; yÞ given by

pðs; yÞ ¼
Z

SD

f ðr;fÞdz. (5)

Here, z is the variable of integration along the chord SD.
The CT machine collects the projection data pðs; yÞ for
many values of s and y. The ‘‘projection slice theorem’’
[1,2] states the equivalence of the two-dimensional Fourier
transform of f ðr;fÞ and the 1-dimensional Fourier trans-
form of pðs; yÞ with respect to S. Symbolically

p̂ðR; yÞ ¼ f̂ ðR cos y;R sin yÞ, (6)

where the symbol ^ represents the Fourier transform and
R is the spatial Fourier frequency. A two-dimensional
Fourier inversion of Eq. (6) leads to the well-known
tomographic inversion formula

f ðr;fÞ ¼
Z p

0

Z 1
�1

p̂ðR; yÞei2pRr cosðy�fÞjRjdRdy, (7)

where

p̂ðR; yÞ ¼
Z 1
�1

p̂ðs; yÞe�i2pRs ds. (8)

We note that the inner integral in Eq. (7) is divergent. A
practical implementation of Eq. (7) incorporates the
replacement of the factor jRj by jRjW ðRÞ. Here W ðRÞ is
a suitable window function that vanishes outside the
interval ½�Rc;Rc� and jRcj is the Fourier cutoff frequency.
Normally, W ðRÞ is an even function of R. Thus Eq. (7)
takes the approximate form

~f ðr;fÞ �
Z p

0

Z 1
�1

p̂ðR; yÞei2pRr cosðy�fÞjRjW ðRÞdRd y. (9)

If p̂ðR; yÞ also vanishes for jRjXRc, then the reconstructed
function, denoted by ~f , agrees exactly with f ðr;fÞ with the
following window function:

W ðRÞ ¼ 1; jRjpRc

¼ 0; jRj4Rc ð10Þ

Eq. (10) and the convolution theorem of Fourier trans-
forms give the reconstructed function ~f as

~f ðr;fÞ ¼
Z p

0

Z 1
�1

pðs; yÞqðs0 � sÞdsdy, (11)

where

qðsÞ ¼

Z 1
�1

jRjW ðRÞei2pRs dR (12)

and

s0 ¼ r cosðy� fÞ. (13)

The index s0 is the data ray passing through ðr;fÞ, the
point being reconstructed. The inner integral in Eq. (11) is
a one-dimensional convolution and the outer integral,
corresponding to the averaging operation (over y), is
termed as backprojection and hence the name convolution
backprojection for this particular implementation. The
CBP method is also known as the filtered backprojection
algorithm because of the ‘‘filtering’’ of the Fourier trans-
form of the projection data p̂ by the window (or filter)
W ðRÞ in the initial stages of the formulation given by
Eq. (7). The function qðsÞ, known as the convolving
function, is evaluated once and stored for the repeated
use for different views (or different angles y).
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Fig. 3. Sample S1 at energy 60 keV: (a) original image; and (b) beam-

hardened reconstructed image.

Table 1

X-ray spectrum for S1 [4–6]

j teðjÞ circles m (in cm�1) non-circles m (in cm�1) Energy (keV)

1 0.1 0.999 0.265 41

2 0.4 0.595 0.226 52

3 0.3 0.416 0.210 60

4 0.2 0.208 0.174 100
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For a given point ðr;fÞ, the inherent error E1, in the CBP
implementation, Eq. (11) is

E1ðr;fÞ ¼ f ðr;fÞ � ~f ðr;fÞ, (14)

where f and ~f are given by Eqs. (7) and (11), respectively.
This error is strictly due to finite cut-off, Rc of the Fourier
frequency and is precisely zero if the projection data
happens to the band-limited and the cut-off frequency is
chosen to be the highest frequency contained in p̂. In
general, to avoid aliasing artifacts, we take, Rc ¼ 1=ð2DsÞ,
where Ds is the spacing of the data rays [1,2].

2.4. Formula for polyenergetic radiation

We summarize briefly the results of Herman [4,5] and
Herman and Trivedi [6] in this section. The linear X-ray
attenuation coefficient at a point inside a cross section of
the object depends on the position of the point ðx; yÞ and on
the X-ray energy e. It can be denoted as mðx; y; eÞ. In case of
monochromatic beam it can be written as (Eq. (5)),

mL ¼

Z
L

mðx; y; eÞdl. (15)

In case of polychromatic beam the result will not be mL,
but rather an estimate for the more complicated integral

pL ¼ � ln

Z 1
0

tðeÞ exp �
Z

L

mðx; y; eÞ
� �

de, (16)

where tðeÞ is the probability that the detected photon is at
energy e.

The details are given by Herman [4–6].

3. Simulation of beam-hardening effect

In this section, beam-hardening effect is illustrated for
certain simulated cross sections. The X-ray spectra is taken
from published literature.

3.1. Simulation of polyenergetic projection data

The formula used for simulation of polyenergetic
projection data is described by Herman [4,5] in detail.
We summarize it here for convenience.

It is assumed that the spectrum of the X-ray beam can be
approximated by a discrete spectrum consisting of J

energies eð1Þ; eð2Þ; . . . ; eðJÞ and that teðjÞ is the probability
that a detected photon (of the X-ray beam through air
between the source and the detector) is at energy eðJÞ. Here
it is assumed that air is the only reference medium so, that
ma

e ¼ 0 and the equation become simpler. Let us divide
the cross section into I pixels. We try to estimate the
linear attenuation coefficient in each of the I pixels. Thus
Eqs. (15)–(16) are replaced by

m ¼
XI

i¼1

mi
ēZi, (17)
p ¼ � ln
XJ

j¼1

teðjÞ exp �
XI

i¼1

mi
ēðjÞZ

i

" #
, (18)

where Zi denote the length of intersection with the ith pixel
of the line from the center of the source to the center of the
detector and meðjÞ is the linear attenuation coefficient at
energy e in the ith pixel. Thus simulation is done on three
different types of cross sections.

3.2. Specimen details

Three specimen have been designed for this simulation
study. The value of the absorption co-efficient has been
chosen to mimic real situations.
Fig. 3(a) shows the first specimen (S1) consisting of three

small circles maintained at the same density at each of the
energies. For this specimen the X-ray spectrum of Table 1
is taken from Herman [4–6]. In the original image
[Fig. 3(a)], m ¼ 0:210 is represented as green colour and
m ¼ 0:416 is represented as red colour. After beam-
hardening effect (Fig. 3(b)) maximum m found out to be
0.4961. The images are normalized between minimum 0
and maximum 0.4961.
The second specimen (S2) is a cross section consisting of

two circles, two triangles, and two rectangles [Fig. 4(a)].
The materials inside them are iron, titanium and void
and the X-ray spectrum given in Table 2 is taken from
Hubbell [7]. The density of void is taken as zero at all
the energies. Titanium is shown in blue colour ðm ¼ 0:473Þ,
iron is in yellow colour ðm ¼ 0:8653Þ and void is in
violet colour. The beam-hardened reconstructed image,
Fig. 4(b), shows that the maximum pixel value becomes



ARTICLE IN PRESS

Fig. 4. Sample S2 at energy 0.3MeV: (a) original image; and (b) beam-

hardened reconstructed image.

Table 2

X-ray spectrum for S2 [7]

j teðjÞ Iron m (in cm�1) Titanium m (in cm�1) Energy (MeV)

1 0.3 2.926 1.235 0.1

2 0.4 1.1496 0.596 0.2

3 0.3 0.8653 0.473 0.3

Table 3

X- ray spectrum for S3 [4–6]

j teðjÞ star m (in cm�1) non-star area m (in cm�1) Energy (keV)

1 0.4 0.999 0.265 41

2 0.3 0.595 0.226 52

3 0.1 0.416 0.210 60

4 0.1 0.265 0.183 84

5 0.1 0.208 0.174 100

Fig. 5. Sample S3 at energy 60 keV: (a) original image; and (b) beam-

hardened reconstructed image.
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1.3191. The images are normalized between minimum 0
and maximum 1.3191.

Third specimen (S3) is a star-shape object whose m values
at different energies are shown in Table 3, which is taken
from Herman [4–6]. There are eight small circles represent-
ing the void whose m values are taken as zero at all the
energies. These small circles have been introduced to check
the contrast features of the correction algorithm. In the
original image (Fig. 5(a)) the maximum pixel value is 0.416.
After the beam hardening effect (Fig. 5(b)) the maximum
pixel value changed to 0.6775. The linear attenuation
coefficients of voids are also changed. The images are
normalized between minimum 0 and maximum 0.6775.

4. Correction of beam-hardening effect

For correcting the beam-hardening effect, the procedure
adopted is essentially the same as given by Herman [4–6]. It
is summarized in this section.
We start with Eqs. (15)–(16) and their discretized version

Eqs. (17)–(18). The least expensive type of beam-hardening
correction can be done by using a function f , which is such
that, for each source/detector pair, f ðpÞ is a reasonable
estimate of m. Let us refer to the reconstruction from the so
corrected polychromatic data ff ðpÞg as the first reconstruc-
tion. It is a set of I numbers, mi

ē, representing the estimated
linear attenuation coefficient at energy ē of the material in
the ith of a total of I pixels.
We see that m̄ approximates to m, and p̄ approximates to

p, and hence f ðp̄Þ approximates to f ðpÞ. Furthermore, since
the line integrals in Eqs. (15)–(16) are approximated in the
same way in Eqs. (17)–(18), it appears likely that the errors,
m̄�m, and, f ðp̄Þ � f ðpÞ, will be similar, i.e., the difference
between these errors will be considerably smaller than
either of the errors). The term, m̄� f ðp̄Þ þ f ðpÞ, is an
approximation to m and is superior to the use of just f ðpÞ.
This is true in the sense that

Dðff ðpÞ þ m̄� f ðp̄Þg; fmgÞoDðff ðpÞg; fmgÞ, (19)

where D represents the root mean square error. The second
reconstruction is one obtained from the data
m̄� f ðp̄Þ þ f ðpÞ. Since the second reconstruction is pre-
sumably more accurate than the first one, this process can
be repeated. The flowchart of correction algorithm is
shown Fig. 6.

5. Results

For specimen 1, Tables 4 and 5 show that average pixel
error (L1 error) and RMS error (L2 error) are reduced
significantly by applying this beam-hardening correction.
In fact, for all the energy levels, the corrected images are
very close to the monochromatic case. Also evident is the
fact that the energy level of 60 keV appears to be the best
for this specimen. For this energy, the match is within
�0:5% for both the error types. We now look at the visual
input provided the corresponding CT images. Fig. 7(a) is
the reconstructed image of S1 obtained by applying the first
level correction. Here the third circle appears lightly. The
non-circles area, green in the original image, [Fig. 7(a)] also
appears very lightly. Fig. 7(b) is the second iteration as per
the algorithm given in Fig. 6. All three circles appear
reasonably well. It matches well with the monochromatic
reconstructed image (Fig. 7(c)).
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Fig. 6. Flow chart representing the correction procedure.

Table 4

Average pixel errors between the original and reconstructed images for S1

Energy (in keV) Beam-hardening Monochromatic After applying

correction

100 0.8026 0.0247 0.0276

60 0.0411 0.0340 0.0345

52 0.0514 0.0405 0.0411

41 0.1150 0.0558 0.0593

Table 5

Root mean square errors between the original and reconstructed images

for S1

Energy (in keV) Beam-hardening Monochromatic After applying

correction

100 0.1052 0.0462 0.0471

60 0.0645 0.0600 0.0599

52 0.0760 0.0703 0.0705

41 0.1823 0.0977 0.1009
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For specimen S2, the error details appear in Tables 6
and 7. The trend is very similar to that of specimen S1. The
correction algorithm, for 0.3MeV energy, produces images
within �0:5% of the monochromatic case. The corre-
sponding images appear in Fig. 8.

Tables 8 and 9 show the error details for the specimen
S3. Here two energy levels, 52 and 60 keV, appear to be
good for this specimen. Fig. 9 shows the images for the
60 keV case. The images for the 52 keV case are similar and
are not included here.

6. Discussion

Beam-hardening effect has been simulated on three
simulated cross sections that mimic reality. The algorithm
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Fig. 7. Sample S1 at energy 60 keV: (a) first reconstruction; (b) second

reconstruction; (c) third reconstruction; and (d) monochromatic recon-

struction.

Table 6

Average pixel errors between the original and reconstructed images for S2

Energy (in MeV) Beam-hardening Monochromatic After applying

correction

0.1 0.6048 0.2222 0.2244

0.2 0.1581 0.1008 0.1009

0.3 0.2477 0.0789 0.0792

Table 7

Root mean square errors between the original and reconstructed data for

S2

Energy (in MeV) Beam-hardening Monochromatic After applying

correction

0.1 0.6970 0.3714 0.3721

0.2 0.2050 0.1705 0.1706

0.3 0.2658 0.1340 0.1342

Table 8

Average pixel errors between the original and reconstructed images for S3

Energy (in keV) Beam-hardening Monochromatic After applying

correction

100 0.3091 0.0309 0.0383

84 0.2735 0.0399 0.0452

60 0.1834 0.0637 0.0645

52 0.1003 0.0923 0.0930

41 0.3301 0.1569 0.1681

Fig. 8. Sample S2 at energy 0.3MeV: (a) first reconstruction; (b) third

reconstruction; and (c) monochromatic reconstruction.

Table 9

Root mean square errors between the original and reconstructed images

for S3

Energy (in keV) Beam-hardening Monochromatic After applying

correction

100 0.3314 0.0553 0.0581

84 0.2936 0.0702 0.0706

60 0.2063 0.1101 0.1089

52 0.1638 0.1577 0.1585

41 0.3650 0.2656 0.2756
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chosen for correcting this effect was suggested by Herman
[4–6] for medical objects. Present simulation results show
that second and third order polynomials are sufficient for
correcting the beam-hardening effects for non-medical
objects also. The error tables and the corresponding
reconstructed images show that one particular energy in
the spectrum is most sensitive in bringing out the true
features of the specimen. The results also indicate that two
iterations are enough for correcting the beam-hardening
effect. It may be mentioned here that these results,
summarized by Figs. 3–9, are consistent with the Kanpur
error theorems [3,8–11] and, hence, can be applied to real
situations. Some edited results with experimental data are
given in Appendix A.
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Min = -0.7881 Max = 11.4723
LAvg = 1.2351 AAvg = 0.8493

Fig. A1. Experimenta

Min = -0.0297 Max = 1.1242
LAvg = 0.1572 AAvg = 0.0718

Fig. A2. Experimental results (with bea

Fig. 9. Sample S3 at energy 60 keV: (a) first reconstruction; (b) second

reconstruction; and (c) monochromatic reconstruction.
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We may mention here that ‘‘polynomial fit’’ and
‘‘hardware filters’’ are the two existing methods to
correct beam-hardening artifacts [11]. We have avoided
comparison with these techniques (in this simulation
exercise), as both of them are only instrument specific in
nature. We are using the inherent error approach [3,7,9] to
quantify the exactness of the algorithm in the work that is
in progress.
Appendix A

We include here an edited version of the results that are
available with us. The sample given below (Fig. A1) is an
X-ray CT image of a perspex disc with five steel pins. The
steel appears as yellow-red and the perspex blue and the
beam-hardening artifacts show up as violet strips. The
‘‘cupping artifact’’ is visible clearly also on the second
image on the right that is a central chord.
We now present the CT image obtained by the proposed

algorithm (Fig. A2). The red coloured steel is clear with
sharp circular boundary and beam-hardening artifacts are
gone. Quantification of errors is done by the NMAX
parameter appearing in these images.
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