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Module 4 Lecture 1 

STABILITY ANALYSIS OF FIXED POINT RESPONSE 

In the previous lecture, we have learned about different perturbation methods to obtain the 
solution of the nonlinear differential equations of motion. Unlike linear system, where only one 
solution exists, in nonlinear case one may observe multiple solutions. Also, the solution may be a 
fixed-point response; it may be periodic, quasi-periodic or chaotic in nature. Out of these 
multiple solutions, some solution may be stable, other may be unstable. A stable solution is one, 
which remain bounded when the response is slightly perturbed. If the response grows with slight 
perturbation, the response is unstable.  In this module the stability and bifurcation analysis of 
different types of responses will be discussed. In this lecture the stability of fixed point response 
will be discussed. 

Let us start with a simple linear system by considering a simple spring-mass system. The 
governing equation in this case is 

mx kx f+ =            (4.1.1)                                                                              

If no external force is acting on the system, the system response is periodic with a frequency 
/n k m=ω  and the amplitude depends on the initial displacement 0x and velocity 0x . Now 

taking pf k x= , if pk k<  or ( ) 0pk kk = −′ > ,  the system will have a bounded solution and 

when ( ) 0pk kk = −′ < , the response will grow. Taking numerical example of 

1 kg, 105 N/m, 5N/mpm k k= = =  .                                        

Figure 4.1.1 shows the time response and phase portrait. 
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 Fig. 4.1.1: Time response and Phase portrait using Eq. (4.1.1) with  

 
Fig 4.1.2: Time response of the system with 205N/mpk = , other parameters same as in Fig.4. 1.1. 

Now taking 1 kg, 105 N/m, 205N/m,pm k k= = =  as 0k′ < , the response grows with time 

exponentially as shown in the time response in Fig. 4.1.2. While the system shown in Figure 
4.1.1 is said to be stable, that shown in Figure 4.1.2 is unstable. Now by adding damping to the 
system the periodic response becomes a fixed point response as shown in Figure 4.1.3.  
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Fig. 4.1.3: Time response curves showing the effect of addition of damping to the system in Eq. 

(4.1.1) to obtain the fixed-point response  

 

Similar to the response discussed in the linear case, in nonlinear case also, one may check, 
whether the response is stable or unstable and one should avoid the conditions for which the 
system becomes unstable. As the system works in a wide range of system parameters, one may 
be interested to know whether the system is stable or unstable in all the range of working 
parameters and in that case one should study the global stability of the system. But in case one is 
interested to know the stability of the system for some specific system parameter, one may 
perform the local stability analysis. Generally Liapunov direct method is used for studying the 
global stability of the system and several other linearization techniques are used for studying 
local stability of the system.   
 
Matlab code for the plot of Figure 4.1.1 and 4.1.2 
 
clc 
clear all 
  
[T,Y] = ode45(@vdp1000,[0 20],[0.1 0]); 
figure(1) 
  
plot(T,Y(:,1),'-') 
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figure(2) 
plot(Y(:,1),Y(:,2),'-'); 
 
function dy = vdp1004(t,y) 
dy = zeros(2,1);    % a column vector 
m=1; 
k=105; 
kp=5;  (%Kp=205 for fig.4.1.2) 
dy(1) = y(2); 
% dy(2) = 0.5*(1 - y(1)^2)*y(2) - y(1); 
dy(2)=-((k-kp)/m)*y(1); 
 
  
In general let us consider dynamic equation of a system as  

( ), ;x f x u M=                                                                          (4.1.2) 
where x  is the state vector, u  is the input vector and M is the control parameter of the system. 
For constant input parameter, at steady state, i.e., at time t →∞ , the response of the system is 
the equilibrium point of the system. Hence to obtain equilibrium point the vector field 
( ), ;f x u M should vanish. So for equilibrium or fixed point response 
( ) 0, ;f x u M =                                                                                      (4.1.3) 

To study the stability of the equilibrium point few stability criteria are described below. 
 
Liapunov Stability  
 
A stationary solution x̂  is said to be asymptotically stable if the response to a small perturbation 
approached zero as the time approached infinity. An asymptotically stable equilibrium is also 
called sink. Alternatively it can be defend as follows. 

An equilibrium point x̂  of the system S, is asymptotically stable if and only if for each 0>ε , 
there exists a 0>δ such that if ˆ(0)x x <− δ , then ˆ( )x t x <− ε  for 0t ≥ and ( ) ˆx xt →  as 
t →∞ . This is depicted in Fig. 4.1.4 where starting from an initial point ( )0x , which is inside 
the boundary ( , )B x δ , as time t →∞ the trajectory returns back to a point x̂ which is inside the 
same boundary. Also, the whole trajectory ( )x t remain within a finite boundary ( , )B x ε . 
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Figure 4.1.4: Stable, unstable and asymptotic stable solution. 

A stationary solution x̂  is said to be stable if the response to a small perturbation remains small 
as the time approaches infinity, otherwise the stationary solution is called unstable as in this case 
the deviation grows with time. An unstable equilibrium is also called a source and is an example 
of a repeller.  

There is a simple sufficient condition proposed by Liapunov which can be used to test an 
equilibrium point for asymptotic stability. It can be obtained by finding the Jacobian matrix of
( )., ;f x u M  The element of Jacobian matrix can be defined as 

( )( , ) k
j

J i j f xx
∂

=
∂

              (4.1.4) 

Liapunov’s first method (indirect method) 

According to this method the system is asymptotically stable, if the real part of each  eigenvalue 
of the Jacobian matrix is negative.  

Hence, if   kλ is the kth eigenvalue of the m m× Jacobian matrix corresponding to the equilibrium 
point, then the system is stable if 

( )Re 0,1k k m< ≤ ≤λ            (4.1.5) 

 

Example 4.1.1: 

Find the Jacobian matrix and study the stability of the following two dimensional system 

( )
1 2

2 12 25
x x
x u xx
=

= −−





            (4.1.6) 

Taking constant input ( )u t r= for 0t ≥ , substituting 1 2 0,x x= =  the system has a single 
equilibrium point at [ ]ˆ 2.5 0x r= , i.e., 1 22.5 , 0.x r x= = The Jacobian matrix corresponding to 
this equilibrium point can be found out from the Jacobian matrix 
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0 1
2

J
r

 
=  − − 

           (4.1.7) 

It may be noted that, in this case the Jacobian matrix does not explicitly depends on the 
equilibrium point [ ]ˆ 2.5 0x r= , but it depends on the input parameter. To find the stability of the 
system  

[ ]
1

2J I r
− 

=−  − − − 

λ
λ λ

         (4.1.8) 

2 2 0r+ + =λ λ           (4.1.9) 

2

1,2
8

2 2
r r −

= − ±λ                       (4.1.10) 

 

Fig. 4.1.5: (a) variation of real part and imaginary part of eigenvalue. (b) variation of real part of 
eigenvalue with control parameter r. 

Fig. 4.1.5 (a) shows the variation of real part and imaginary part of the eigenvalues with 
variation in the control parameter r. Fig. 4.1.5 (b) clearly shows that for 0r >  the real part of 
both the eigenvalues are negative. 

Liapunov’s second method (direct method): 

Each asymptotically stable equilibrium point has an open region surrounding it which is called 
the domain of attraction. Liapunov’s second method can be used to establish the asymptotic 
stability of an equilibrium point and to estimate its domain of attraction. For this purpose a 
function known as Liapunov function is required to be developed. A function LV is a Liapunov 
function in the domain Ω if and only if  

1. ( )LV x  has a continuous derivative.                  (4.1.11) 
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2. ( ) 00LV =                      (4.1.12) 

3. ( ) 0 for 0LV xx > ≠                     
(4.1.13) 

Second and third points refers to a function ( )LV x which is positive definite. Thus a Liapunov 
function is a continuously differentiable positive definite function of the state. According to 
Liapunov’s second method the equilibrium point ˆ 0x = in the domain S associated with a 
constant input is said to be asymptotically stable if along the solution S,  

1. ( )( ) 0LV x t ≤                     (4.1.14) 

2. ( )( ) ( )0 0LV xx tt ≡ ⇒ ≡                               (4.1.15) 

The advantage of Liapunov’s second method which is also called the direct method is that it can 
be used to check the stability (condition 1 and 2) without solving for the solution of the 
differential equation governing the nonlinear system. But the disadvantage of this method is that 
it is difficult to obtain a Liapunov function for all physical systems. Also it does not provide any 
information about the transient response or performance of the system. For example it cannot 
predict whether a system is over-damped or under-damped or how long it will take to suppress a 
disturbance. Generally one can take the total energy or the potential energy as the Liapunov 
function of a system as they are positive definite function. 

Example 4.1.2:  

Study the stability of the following system by using Liapunov’s second method. 

1 2
3

2 1 2 2

x x
x x x x
=

= − − +





                      (4.1.16) 

Solution: 

For the system the equilibrium point is [ ]ˆ 0 0x ′=  which is obtained by substituting 1 2 0x x= =  . 

Let us consider a Liapunov function  
( ) 2 2

1 2 , 0, 0LV x xx = + > >α β α β                   (4.1.17) 

( ) ( ) [ ]

[ ]

( )
( ) ( )

1 2

2
1 2 3

1 2 2

3
1 2 2 1 2 2

2 2
1 2 2 2

2 2

2 2

2 2

2 2 1

L
L

V xV x xx xx
x

x
x x

x x x

x x x x x x

x x x x

∂ = = ∂ 
 

=  − − + 
= + − − +

= −− −



 α β

α β

α β

βα β

                             (4.1.18) 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 9 of 50 
 
 
 
 

Since 1 2x x  changes sign at the equilibrium point 0x = , so one should constrain α and β so as to 
eliminate this term. So when =α β ,  

( ) ( )2 2
2 22 1LV x xx = − − β                    (4.1.19) 

This term ( )LV x  is negative only when 
 2 1x <                        (4.1.20) 
This satisfies the first condition. To check condition 2, using (4.1.19) one can write  

( ) ( )2 2
2 2

2 2

0 2 01
0 0

LV x xx
x x

≡ ⇒ − ≡−

⇒ ≡ ⇒ ≡





β
                   (4.1.21) 

Using Eq. (4.1.21) in Eq. (4.1.16), one can obtain  1 0x ≡ . 

Hence ( ) 10 0LV xx ≡ ⇒ = and 2 0x ≡ i.e., ( ) 0x t ≡ . This satisfies the second condition and hence 

[ ]ˆ 0 0x ′= is asymptotically stable. 

Stability of a first order system 

For a dynamic system, one may write the governing differential equation of motion as a set of 
first order differential equation or one may reduce the governing equation of motion by applying 
perturbation method to the following form. 

                   (4.1.22) 

In this equation M represents the control parameters or the system parameters. The steady state 
response of this system can be obtained by substituting 0,x = and solving the resulting nonlinear 
algebraic/transcendental equation. To obtain the stability of the steady state fixed point response, 
one may perturb or give a small disturbance to the above mentioned equilibrium point and study 
its behaviour.  While for a stable equilibrium point, the system return backs to the original 
position, for unstable system, after perturbation, the system response grows. Hence, to study 
stability of the system one uses the following steps.  

Considering  0x  as the equilibrium point, substitute 0( ) ( )= +x t x y t  in equation (4.1.22). 

The resulting equation will be  

( ) ( ) ( ) ( )2
0 0 0 0 0 0, ; ;= + + + ⇒ = ≡ 

 x xy F x y M D F x M y O y y D F x M y Ay   (4.1.23) 

( ),x F x M=
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Where 

1 1 1

1 2

2 2 2

1 2

1 2

. . . .

 
 
 
 
 =  
 
 
 
  







n

n

n n n

n

dF dF dF
dx dx dx
dF dF dF
dx dx dxA

dF dF dF
dx dx dx

 

This matrix is known as the Jacobian matrix and the eigenvalues of the constant matrix A 
provides the information about the local stability of the fixed point x0.   

Following definitions are required to study the stability and bifurcation of nonlinear systems. 

 Hyperbolic fixed point: when all of the eigenvalues of A have nonzero real parts it is 
known as hyperbolic fixed point.  

 Sink: If all of the eigenvalues of A have negative real part. The sink may be of stable 
focus if it has nonzero imaginary parts and it is of stable node if it contains only real 
eigenvalues which are negative. 

 Source: If one or more eigenvalues of A have positive real part. Here, the system is 
unstable and it may be of unstable focus or unstable node. 

 Saddle point: When some of the eigenvalues have positive real parts while the rest of the 
eigenvalues have negative real parts   

 Marginally stable: If some of the eigenvalues have negative real parts while the rest of 
the eigenvalues have zero real parts   
 

Typical saddle, stable node, stable spiral and center are shown in Fig. 4.1.6 

 0
Stable spiral
+ + = x x x

 

2 0
Stable node
+ + = x x x

 

0
Saddle
− =x x

 

0
Center
+ =x x
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Fig: 4.1.6: Schematic diagram of trajectory for different equilibrium points (Example 4.1.3).  

Example 4.1.3: 

Study the equilibrium points for the following dynamic equation (a) 0− =x x  (b) 0+ =x x  

(c) 0+ + = x x x  (d) 2 0+ + = x x x . 

Solution: 

For the system 0− =x x , one may write the first order equation by considering  

 
=
=





x y
y x

 

Here the equilibrium point is[ ]0 0 ′ . So the Jacobian matrix can be written as 
0 1
1 0
 

=  
 

A and the 

system has eigenvalue of 1 and -1. Hence according to the definition as the system has a positive 
real eigenvalues, the equilibrium point is unstable and it is a saddle point. Other solutions are 
given in the following table. 
 
Original 
equation 

1st order 
equation 

Equilibrium 
point 

Jacobian 
matrix 

Eigen values Type of 
equilibrium 
point 

0+ =x x  =
= −





x y
y x

 [ ]0 0 ′  
0 1
1 0

 
=  − 

A  1

2

λ
λ
=
= −

i
i
 Center 

0+ + = x x x  =
= − −





x y
y x y

 [ ]0 0 ′  
0 1
1 1

 
=  − − 

A  
( )
( )

1

2

/ 21 3
/ 21 3

λ

λ

= − +

= − −

i

i
 Stable spiral 

2 0+ + = x x x  
2

=
= − −





x y
y x y

 [ ]0 0 ′  
0 1
1 2

 
=  − − 

A  1

2

1
1

λ
λ
= −
= −

 Stable node 

 

Few more theorems related to stability of the nonlinear systems are given below. 

Lagrange and Dirichlet Theorem: 

According to this theorem, if the potential energy has an isolated minimum at an equilibrium 
point, the equilibrium state is stable. 

Hartman–Grobman theorem or linearization theorem:   
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It is a theorem about the local behaviour of dynamical systems in the neighborhood of a 
hyperbolic equilibrium point. 
Basically the theorem states that the behaviour of a dynamical system near a hyperbolic 
equilibrium point is qualitatively the same as the behaviour of its linearization near this 
equilibrium point provided that no eigenvalue of the linearization has its real part equal to 0. 
 

 Lyapunov Theorem: 

 If the potential energy at an equilibrium point is not a minimum, the equilibrium state is 
unstable. For a system  ( ),=x F x M with displacement u and potential energy f, and  

At saddle point, 
2

2 0= <
d F df
du du

 and at center 
2

2 0= >
d F df
du du

 

While the motion is unstable near the saddle point it is oscillatory in the neighborhood of center. 

Exercise Problems 

1. Consider a robotic manipulator whose equation of motion can be written as  

( ) ( ) ( ),M V G= + +

τ θ θ θθ θ  

Study the stability of the system with a control law ( )p dK E K G= − +τ θ θ  where dE = −θ θ , 
using Liapunov direct method.  

Hints:  Liapunov’s function ( )1 1
2 2L pV M E K E′ ′= + θ θθ . 

2. Find the equilibrium point(s) and check their stability for the following system  

(a) 4 0− =x x  (b) 9 0+ =x x  

(c) 3 0+ + + = x x x x  (d) 32 0+ + − = x x x x . 
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Lecture 2 

BIFURCATION ANALYSIS OF FIXED POINT RESPONSE 

 

In nonlinear systems, while plotting the frequency response curves of the system by changing the 
control parameters, one may encounter the change of stability or change in the number of 
equilibrium points. These points corresponding to which the number or nature of the equilibrium 
point changes, are known as bifurcation points. For fixed point response, they may be divided 
into static or dynamic bifurcation points depending on the nature of the eigenvalues of the 
system. If the eigenvalues are plotted in a complex plane with their real and imaginary parts    (as 
shown in fig 4.2.1) along X and Y directions, a static bifurcation occurs, if with change in the 
control parameter, an eigenvalue of the Jacobian matrix crosses the origin of the  complex plane. 
In case of dynamic bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary 
axis with change in control parameter of the system. Hence, in this case the resulting solution is 
stable or unstable periodic type. 

 

 

                                                       x        x               x     x 

                                                                  x       x     x  x 

                                                 x     x 

  

 

Fig. 4.2.1: Variation of eigenvalues in a complex plane 

 

Static Bifurcation 

For a system  ( );µ=x F x , following two conditions to be satisfied at the static bifurcation 
point. 

Re 

Im 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 14 of 50 
 
 
 
 

1. ( )0 ; 0µ =cF x                                                                                                     (4.2.1)  

2. The Jacobian matrix ∂ = ∂ x
FD F
x

 has a zero eigenvalue while all of its other eigenvalues have 

non zero real parts at ( )0; µcx . Hence the point is nonhyperbolic. 

There are mainly three different types of static bifurcation points viz., saddle-node, pitch-fork 
and transcritical bifurcation. One can distinguish saddle-node bifurcation from other bifurcation 

point by finding  µ µ
∂

=
∂
FF  which is a 1×n vector of first partial derivatives of the components of 

F with respect to the control parameter µ and  then by constructing a matrix µ  xD F F . 

At a saddle-node point  µF does not belong to the range of xD F  and for pitchfork and 

transcritical bifurcation point µF  belongs to the range of xD F . It may be noted that the range of 

an ×n n  matrix A consists of all vectors AZ where ∈ nZ R . Hence µ  xD F F has a rank of n at 

saddle node bifurcation point and rank of (n-1) at other static bifurcation point. 

In the state control space all of the branches of fixed points that meet at a saddle-node bifurcation 
point have the same tangent. For pitchfork and transcritical bifurcation points tangents are not 
same for all the branches meeting at the bifurcation points.       
         

Saddle-node Bifurcation 

The generic form of saddle-node bifurcation is ( ) 2;µ µ α= = +x F x x .  When a scalar control 
parameter µ is varied, in the ~x µ  plane, a static bifurcation occurs when the following 
conditions are satisfied. 

1 ( )0 ; 0µ =cF x  i.e., 2 0µ α+ =x  or, 0x µ
α
−

= ±
                                                     

(4.2.2) 

2. Now the Jacobian matrix 2α= =xJ D F x . At the bifurcation point it can be written as 

2 2µα µα
α
−

= = −J
                                                                                         

(4.2.3) 

Hence, the eigenvalue 2λ µα= −                                                                        (4.2.4) 

Taking 0 01,  and 2α µ λ= − = ± = −x x                                                                 (4.2.5) 
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Figure 4.2.2(a) shows the variation of equilibrium point 0x  with control parameter µ  for the 

system ( ) 2;x F x x= = − µ µ . In this case the equilibrium points are x µ= ±  and the 
eigenvalue is -2 x  which change its sign at 0 0.x =  For positive value of 0x the response is 
stable and for negative value of 0x the response is unstable. From the figure it is clear that the 
bifurcation point is at 0µ = and it is a saddle-node bifurcation as the two branches meeting at 

0µ = have same tangent. Also now constructing the µ  xD F F matrix one can write 

µ  xD F F = [ ]0 1 , So µF  does not belongs to range of xD F . Rank of this matrix is 1. So the 
origin is a saddle-node bifurcation point. 

Example 4.2.1: 

 For a typical dynamic system the frequency-amplitude relation is given by the following 

equation.  

2 2
1 4 5

1 1 sin
8 2

 = −ζ −ω α + α γ 
 

a a a         (4.2.6) 

3 2 2
1 4 5

3 3 1 cos .
8 8 2

 γ = σ− −ω α + α γ 
 

a a K a a       (4.2.7) 

Here, 1 1ω εσ= + . 4 5, , ,kζ α α  are fixed system parameters. The saddle node bifurcation 

points have been shown in Fig. 4.2.2. (b)  

 

 

 
(a) 

 
(b) 

 

1ω

a 

 •

 •

µ

x 
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Fig. 4.2.2: Saddle-node bifurcation point corresponding to (a) ( ) 2;x F x x= = − µ µ , (b) example 

of a typical second order system. 

Pitchfork bifurcation: The normal form for a generic pitchfork bifurcation of a fixed point is

( ) 3;µ µ= = −x F x x x
                                                                                                                          (4.2.8) 

In this case the equilibrium point is obtained by substituting ( ); 0µ =F x . 

So, ( )3 20 0µ µ− = ⇒ =−x x x x                                                                                                        (4.2.9) 

So, One can obtain two solutions viz., the trivial solution i.e., 0=x and the non trivial solution µ= ±x  

The solutions are plotted in Figure 4.2.3. 

 
Figure 4.2.3: Super critical pitchfork bifurcation 

 

Now  23µ= = −xJ D F x                                                                                             (4.2.10) 

So, for the trivial branch µ=J  and the eigenvalue is λ µ= . Hence, the branch AO for which 

the eigenvalue is negative, is stable and the branch OB which has a positive eigenvalue ( 0µ > ) 

is unstable.  

Similarly for the nontrivial solution shown by the curve COD, the eigenvalue is    
23 3 2λ µ µ µ µ= − = − = −x .                                                                                      (4.2.11) 

As 0µ > for this branch,  the eigenvalue is always negative and so the branch is stable. 

-5 0 5
-3

-2

-1

0

1

2

3

µ

x
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It should be noted that before point ‘O’, the system has only stable trivial state solution and after 

this point, the system has 3 branches, out of which the trivial state is unstable and non-trivial 

state is stable. So, there is a change in the number of solution and also, change of stability of the 

system at point O. Hence this is a bifurcation point and this bifurcation point is known as super-

critical pitchfork bifurcation point. 

Here, it can be shown that  
23µ µ=   −  xD F F x x                                                                                        (4.2.12) 

At the origin which is a bifurcation point [ ]2 0 03µ µ= =   −  xD F F x x . Hence the rank is 

less than 1. 

Now by considering ( ) 3;µ µ= = +x F x x x , one can find the equilibrium points at  0=x and 

µ= ± −x . Hence, the system has a trivial solution for all values µ  and nontrivial solution only for 

0µ <  as shown in Figure 4.2.4 (a). In this case, the eigenvalue 23λ µ= + x .  Hence, for trivial state, the 

branch AO is stable and branch OB is unstable. Similarly for nontrivial state 

23 3 2 0λ µ µ µ µ= + = − = − ≥x  and hence unstable. So, if one increases the control parameter µ  

from point A, the system will have stable trivial response which will suddenly vanish at point O as there 

is no stable state beyond this point. Hence, this is a dangerous bifurcation as the system may be 

subjected to catastrophic failure at this point. This bifurcation point is known as sub-critical pitchfork 

bifurcation.  
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Figure 4.2.4: Subcritical pitchfork bifurcation. 

 

A typical sub critical and super critical 

bifurcation diagram is shown in Fig 

4.2.4(b) (Pratiher and Dwivedy…) 

 

 

Transcritical bifurcation 

The normal or generic form of this bifurcation is given by 

( ) 2;µ µ= = −x F x x x
                                                                                                                          (4.2.13) 

So, in this case the equilibrium point is obtained by substituting ( ); 0µ =F x  and they are 0=x (trivial 

state)and  µ=x (non trivial state). Here, the eigenvalue can be given by 2λ µ= − x . Figure 4.2.5 

shows the variation of x with µ= .  

Here for branch AO, λ   is negative and hence this branch is stable. 

Branch OB, λ  is positive, hence it is unstable. 

Branch CO, 2 2λ µ µ µ µ= − = − = −x , (positive), So this branch is unstable 

Branch OD, λ   is negative and hence this branch is stable. 

It may be observed that the trivial and non-trivial branches change their stability at the origin and 

so the name of this bifurcation point is transcritical bifurcation. 
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Figure 4.2.5: Variation of  x with  showing transcritical bifurcation at point O. 

Hopf  bifurcation: For a system  ( );µ=x F x , following two conditions to be satisfied at the 
dynamic bifurcation point (Marsden and McCracken 1976, Nayfeh and Balachandran 1995). 

1. ( )0 ; 0µ =cF x  

2. The Jacobian matrix ∂ = ∂ x
FD F
x

 has a pair of purely imaginary eigenvalues ω±i  while all of 

its other eigenvalues have non zero real parts at ( )0; µcx .  Hence, the point is a nonhyperbolic 
fixed point 

3. For µ µ= c , let the analytical continuation of the pair of imaginary eigenvalues be iλ ω= ± . 

Then, 0λ
µ
∂

≠
∂

at µ µ= c . This condition is known as the transversality condition as the 

eigenvalue crosses the imaginary axis with nonzero speed.  

When all the above three conditions are satisfied, a periodic solution of period 2 /π ω  is 

developed at ( )0; µcx . Such bifurcations are called Hopf bifurcation or Poincare’-Andronov 

Hopf bifurcation. 

The normal form for a generic Hopf bifurcation of a fixed point is given as follows. 

                                                                                 (4.2.13) 

-5 0 5
-5

0

5

µ

x

( )( )2 2x x y x y x yµ ω α β= − + − +

A B O 

C 

D 
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                                                                                   (4.2.14)                               

One can obtain the fixed point at (0,0) for all values of  µ . The Jacobian matrix corresponding to 
this equilibrium point can be given by 

µ ω
ω µ

− 
=  
 

A
                                                                                                              

(4.2.15) 

Hence, the eigenvalues are obtained by solving the equation ( )2 2 0ωµ λλ = + =−−A I . So, the 
eigenvalues are 1λ µ ω= + i  and 2λ µ ω= − i . For control parameter 0µ = , a pair of complex 

conjugate eigenvalues cross the imaginary axis at non-zero values as 1 1λ
µ
=

d
d

 and  2 1λ
µ
=

d
d

. 

Hence, the three conditions for the Hopf bifurcations are satisfied at the fixed point (0,0). The 
period of the bifurcating periodic solution at (0,0;0) is 2 /π ω . 

 In polar form these two equations can be written by substituting cosθ=x r and sinθ=y r  as 
follows. 

3 2,r r r rµ α θ ω β= + = +



                                                                                         
(4.2.16) 

For steady state 0θ= =r . Substituting 0=r , it can be observed that the system has both trivial 
0=r and non-trivial solution. The trivial solution corresponds to the equilibrium point or the 

fixed-point response ( 0, 0= =x y ) and the nontrivial fixed point 0≠r corresponds to a periodic 
solution with amplitude r  and frequency θ  which is created due to the Hopf bifurcation.     

It may be noted that while supercritical pitchfork and Hopf bifurcation, respectively results in 
stable fixed-point and periodic responses, the sub-critical  pitchfork and Hopf bifurcation, 
respectively results in unstable fixed-point and periodic responses. Hence, these sub critical 
bifurcation points are dangerous bifurcation points.  

 

In case of nonlinear vibration many phenomena such as jump-up, jump-down, saturation, multi-
stable region along with different types of responses such as fixed-point, periodic, quasi-periodic 
and chaotic are observed. Many bifurcation phenomena such as sub and super critical pitchfork, 
Hopf, saddle-point, period doubling etc are observed. One may observe different type of crisis 
phenomena in chaotically modulated system. 

 

( )( )2 2y x y x y x y= − + − + µ ω α β
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Fig. 4.2.6 (a) super-critical Hopf bifurcation, (b) sub-critical Hopf bifurcation. 

Example 4.2.4: Stability analysis of multi-degree of freedom system 

The reduced equations for a based excited cantilever beam with attached mass can be given by  

( ) ( ){ }212121111
'
1111 sin2sin

2
12 γγγξω −+−+ afafaa ( ) 03sin25.0 21

2
1212 =−+ γγaaQ     (4.2.17) 

( ){ }

( )

'
1 1 1 1 11 1 1 12 2 1 2

2
2 2

1 1 12 2 1 1 2
1

1 12 cos 2 cos
2 2

1 1 cos 3 0
4 4e j j

j

a f a f a

a a Q a a

ω γ σ γ γ γ

α γ γ
=

 − − + − + 
 

+ − =∑
                                                (4.2.18) 

( ) ( ){ } ( )' 3
2 2 2 2 21 1 2 1 21 1 2 1

1 12 sin sin 3 0
2 4

a a f a Q aω ξ γ γ γ γ+ − − + − =                                    (4.2.19) 

( ) ( ) ( )
2

' 2 3
2 2 2 2 1 21 1 2 1 2 2 21 1 2 1

1

1 1 12 1.5 cos cos 3 0
2 4 4e j j

j
a f a a a Q aω γ σ σ γ γ α γ γ

=

+ − − − + + − =∑ (4.2.20) 

 For steady state, 0'
2

'
2

'
1

'
1 ==== γγ aa . These non-linear algebraic equations can be solved 

numerically to obtain the fixed point response of the system.  

•

•

•

•
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By directly perturbing the reduced equations, one can study the stability of the non-trivial steady 
sate solution. But, as the reduced Eqs. (4.2.17-20) have  the coupled terms '

11γa  and '
22γa , the 

perturbed equations will not contain the perturbations '
1γ∆  or '

2γ∆ for trivial solutions and hence 
the stability of the trivial state cannot be studied by directly perturbing these equations.  To 
circumvent this difficulty, normalization method can be adopted by introducing the 
transformation 

2,1,sin,cos === iaqap iiiiii γγ                  (4.2.21) 

into the reduced equations (4.2.17-4.2.20). Carrying out trigonometric manipulations, one arrives 
at the following normalized reduced equations or the Cartesian form of modulation equations: 

( ) 2121111111
'
11 2

1
2
12 qfqfpp +






 −++ σωξω  

( ){ } ( )∑
=

=+−+−+
2

1

22
11121

2
1

2
1212 0

4
12

4
1

j
jjje qpqqpppqqQ α             (4.2.22) 

( ) 2121111111
'
11 2

1
2
12 pfpfqq +






 −++ σωξω  

( ){ } ( )∑
=

=+−+−+
2

1

22
11211

2
1

2
1212 0

4
12

4
1

j
jjje qppqqpqppQ α              (4.2.23) 

( ) ( ) 221212122
'
22 23

2
12 qqfpp σσωξω −+++  

( ) ( )∑
=

=−−−−
2

1

22
22

2
1

2
1121 0

4
13

4
1

j
jjje qpqqpqQ α      (4.2.24) 

( ) ( ) 221212122
'
22 23

2
12 ppfqq σσωξω −−−+  

( ) ( )∑
=

=++−+
2

1

22
22

2
1

2
1121 0

4
13

4
1

j
jjje qppqppQ α      (4.2.25) 

Now perturbing the above equations, one obtains  

{ }Tqpqp '
2

,'
2

'
1

'
1 ,,, ∆∆∆∆ [ ]{ }T

c qpqpJ 2211 ,,, ∆∆∆∆=      (4.2.26) 

where T is the transpose and [ ]cJ  is the Jacobian matrix whose eigenvalues will determine the 
stability and bifurcation of the system. The stability boundary for the linear system (i.e. the trival 
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state) can be obtained from the eigenvalues of the matrix [𝐽𝑐] by letting 02121 ==== qqpp . A 
detailed numerical results can be found in the work of Kar and Dwivedy (1999). 

 

Exercise Problems 

1.Study the stability of the following one dimensional systems by plotting the stable and unstable 
branches. Also, write about the type of bifurcation observed in the system. 

(a) 24x xµ= −  (b) 24x xµ= + (c) 24x x xµ= +  (d) 24x x xµ= − (e) 34x x xµ= + (f) 34x x xµ= −  

2. Develop the equation for steady state solution and the Jacobian matrix from the reduced equations 
obtained by solving the Duffing equation using method of multiple scales as given below.  Plot 
the frequency response curve with stable and unstable branches with different colours. 

  
0

1' sin
2

fa aµ γ
ω

= − +
               

 

3

0 0

3 1' cos
8 2

fa a aαγ σ γ
ω ω

= − +
             

 

Answer: Equation for frequency response is given by 

1
2 2

2 2
2 2

0 0

3
8 4

fa
a

ασ µ
ω ω

 
= ± − 

                                                                                            
 

The Jacobian matrix is  

2
0

0
0

2
0

0 0

3
8

91
8

aa
J

a
a

αµ σ
ω

ασ µ
ω

 
− − − 

 =
 

− − 
                                                                             

 

 

3. Find the Jacobian matrix for the system given in equations (4.2.6) and (4.2.7). 

4. Find the Jacobian matrix for the system given by the following  equations. 

                        31 1 sinγ
8 4
k fa a a a= −ζ + + ,                                                                  
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         3 33 1
1 2 1

1 3 12 sin cosγ
4 3 4 2

fa a a a k aαω−   γ = − α −α + + γ +   ε   
 .                     

Answer: The Jacobian matrix is given by 

21 1 1
0 0 0 0

3
1 2 0 0 1 0 2 1

0 1 0 0

3 sin cos
8 4 4

3 1+ sin 1       cos sin2 3 2
4 2

    

k f fa a

J a a k fa k

 −ζ + + γ γ 
 

α=   − α −α + γ  γ − γ  
  

                    

5. Write a Matlab code to plot time response and phase portrait of a periodic response (a) 
5sin 5y t=  (b) ( )5 sin 5 sin10y t t= + . 

Solution 
 
t=0:0.01:10; 
y=5*sin(5*t); 
yt=25*cos(5*t); 
y1=5*(sin(5*t)+sin(10*t)); 
yt1=5*(5*cos(5*t)+10*cos(10*t)); 
figure(1) 
subplot(2,2,1)   plot(t,y) 
xlabel('t') 
ylabel('y') 
subplot(2,2,2) 
plot(y,yt) 
xlabel('t') 
ylabel('y') 
subplot(2,2,3) 
plot(t,y1) 
xlabel('t') 
ylabel('y1') 
subplot(2,2,4)  plot(y1,yt1)  
xlabel('y')  ylabel('yt1') 
 
 
 
Reference:  

1. A. H. Nayfeh, and B. Balachandran, Applied Nonlinear Dynamics, Wiley, 1995. 
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2. R. C. Kar and S. K. Dwivedy, Non-linear dynamics of a slender beam carrying a lumped 

mass with principal parametric and internal resonances. International Journal of 

Nonlinear Mechanics, 34, (3), 515-529, 1999.  

3. J.E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications, Springer-

Verlag, New York, 1976 

 
 
 
 
 

Module 4 Lecture 3 

Stability analysis of Periodic response 

In this lecture stability analysis of periodic response will be discussed. As pointed out in the 
previous lecture, after Hopf bifurcation, a periodic response occurs in the system. Also, in many 
resonance conditions, the system yields a periodic response. Hence, one should study the 
stability and bifurcation of the periodic response.  

Let us consider the forced Duffing equation as given below. 

2 3
0 2 cosω εµ εα+ = − − + Ω u u u u K t                                                                                                        (4.3.1) 

Using Method of multiple scales, the solution of this equation for the super harmonic resonance 
condition ( 0 3ω ≈ Ω )  can be written (Nayfeh and Mook 1979) as 

cos(3 ) 2 cos ( ).u a t t oγ ε= Ω − + Λ Ω +                                                                                                  (4.3.2) 

Here a and γ can be obtained from the following reduced equations. 

  

3

0
2 3

3

0 0 0

sin

3 3( ) cos
8

a a

a a a

αµ γ
ω

α α αγ σ γ
ω ω ω

Λ′ = − −

Λ Λ′ = − − −
                                                                                          (4.3.3) 

For steady state as ′a and γ ′ are zero, Eq. (4.3.3) can be written as  

3

0 0
0

2 3
3

0 0 0
0 0 0

sin 0

3 3( ) cos 0
8

a

a a

αµ γ
ω

α α ασ γ
ω ω ω

Λ
− − =

Λ Λ
− − − =

                                                                                              (4.3.4) 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 26 of 50 
 
 
 
 

Here 0a and 0γ are the steady state solutions.  Now eliminating 0γ from the above equations, one may 
obtain the following  equation for the frequency response curve 

2 2 6
2 2 2 3

0 0 0 2
0 0 0

3 3( )
8

α α αµ σ
ω ω ω
Λ Λ

+ − − =a a a                                                                                                 (4.3.5) 

It may be noted at this stage that  though the actual solution u is periodic (refer Eq. 4.3.2), one may 
study the stability of the fixed point response 0a as discussed in the previous lecture by perturbing the 
solution as given below. 

0 1 0 1,a a a γ γ γ= + = +                                                                                                                                (4.3.6) 

Substituting Eq. (4.3.6) in the reduced equations (4.3.3) one can obtained the following sets of equation. 

3

1 1 0
0

3 3

1 0 1 1 0 1 02
0 0 0 0 0

cos

3 cos sin
8

a a

a a a
a a

αµ γ γ
ω

α α αγ γ γ γ
ω ω ω

Λ′ = − −

Λ Λ′ = − + +
                                                                               (4.3.7) 

 The Jacobian matrix can be given by 

3

0
0

3 3
0

0 0
0 0 0 0

cos
J

3
cos sin

8
a

a

αµ γ
ω

α α αγ α γ
ω ω ω

 Λ
 
 =
 Λ Λ

− − 
  

                                                                                    (4.3.8) 

Now one can study the stability by finding the eigenvalues λ of the Jacobian matrix. This can be 
obtained by finding the determinant of λ−J I which yield the following equation.  

3 3
2 0

0 02
0 0 0 0

3( ) cos ( cos )
8
αα αλ µ γ γ

ω ω ω
Λ Λ

+ = −
a

a
                                                                                (4.3.9) 

The solution is stable if the real parts of the eigenvalues are negative and it is unstable if at least one of 
the real parts of the eigenvalues is positive. So in this way one can study the stability of the periodic 
solution by studying the corresponding solution of the fixed point response.  

Instead of using perturbation methods to obtained the steady state response of the solution, if one use 
harmonic balance method the solution can be given by 

0 1 1 3 3cos sin cos3 sin 3u u A t B t A t B t= = Ω + Ω + Ω + Ω                                                             (4.3.10) 
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The constants of this equation (4.3.10) can be obtained by following the standard procedure. Now to  
study the stability of the periodic solution (4.3.10) one has to perturb the original equation. In this case, 
letting 0 1u u u= + in Eq. (4.3.1) one can write 

2 2
1 0 1 1 1 1 3 3 12 3 [ cos sin cos3 sin 3 ] 0ω εµ εα+ + + Ω + Ω + Ω + Ω = u u u A t B t A t B t u                       (4.3.11) 

Or, 2
1 0 1 1 12 ( ) 0ω εµ ε+ + + = u u u f t u                                                                                                         (4.3.12) 

where ( )f t is a periodic function of time. Equation (4.3.12) is in the form of Mathieu-Hill’s type of 
equation whose solution can be obtained by using Floquet theory. 

FLOQUET THEORY 

It is used for characterizing the functional behaviour of parametrically excited systems which are 
represented by partial differential equation with periodic coefficients (Nayfeh and Mook 1979). 

Let us consider the equation 

1 2( ) ( ) 0u p t u p t u+ + =                                                                                                                      (4.3.13) 

Since Eq. (4.3.13) is a linear second order homogeneous differential equation, there exist two linear non 
zero independent fundamental sets of solutions 1 2( ) and ( )u t u t . 

Hence, one can write  1 1 2 2( ) ( ) ( )u t c u t c u t= +                                                                                   (4.3.14) 

Where 1c   and 2c  are constants. Since, 1 1( ) ( )p t p t T= + , 

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u t T p t T u t T p t T u t T p t u t T p t u t T+ = − + + − + + = − + + +       

Hence, if  1 2( ) and ( )u t u t are fundamental set of solution of Eq. (4.3.13), 1 2( ) and ( )u t T u t T+ + are 
also a fundamental set of solutions of Eq. (4.3.13). So one can write 

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( )
( ) ( ) ( )

u t T a u t a u t
u t T a u t a u t

+ = +
+ = +

                                                                                                               (4.3.15) 

Where ija are the elements of a constant nonsingular matrix [ ]A . This matrix is not unique and depends 

on the fundamental sets being used. There exists a fundamental set of solutions for which the off 
diagonal terms of the matrix [ ]A  are zero.  Hence, in this case one may write 

1 11 1 1 1

2 22 2 2 2

( ) ( ) ( )
( ) ( ) ( ).
+ = = λ
+ = = λ

v t T a v t v t
v t T a v t v t

                                                                                                          (4.3.16) 

Here λ is a constant which may be complex. These solutions are called normal or Floquet solutions 
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Hence, one can write 

 ( ) ( ), 1, 2+ = λ =i i iv t T v t i                                                                                                                     (4.3.17) 

So, ( ) 2( 2 ) ( ) ( ) ( )( )+ = = λ + = λ λ = λ+ +i i i i i i i i iv t T v v t T v t v tt T T                                                   (4.3.18) 

Similarly,                                                                                                                 (4.3.19) 

Here n is an integer.  For the steady state as time tends to ∞ ,  n should tends to ∞ . Hence, for steady 
state  

0  if 1
( )

  if 1
 <λ= ∞ >λ

i

i

i

v t                                                                                                                                     (4.3.20) 

When λ i =1, ( )iv t is periodic with period T and when λ i =-1, ( )iv t is periodic with period 2T . This 

forms the basis of the bifurcation analysis of periodic response. The system is stable if λ i ’s remain 
within the unit circle, and are unstable if they are out of the unit circle. On the boundary of the unit 
circle the solution may be periodic or two periodic depending on positive or negative values of λ i . 

 Now multiplying exp[ ( )]i t Tγ− + in Eq. (4.3.17) one can write 

exp[ ( )] ( ) exp( )exp( ) ( )i i i i i it T v t T T t v tγ λ γ γ− + + = − −                                                                       (4.3.21) 

Now by choosing   

exp( )λ γ=i iT ,                                                                                                                                              (4.3.22) 

Eq. (4.3.21) can be written as 

exp[ ( )] ( ) exp( ) ( )i i i i it T v t T t v tγ γ φ− + + = − =                                                                                        (4.3.23) 

From Eq. (4.3.22) exp( ) ( )φ γ= −i i it v t is a periodic function with period T . So Eq. (4.3.16) can be written 
as 

1 1 1

2 2 2

( ) exp( ) ( )
( ) exp( ) ( )

v t t t
v t t t

γ φ
γ φ

=
=

                                                                                                                                   (4.3.24) 

Where, ( ) ( )φ φ+ =i it T t . 

From Eq. (4.3.22) one can write 

( )1 lnγ λ=i iT
                                                                                                                                                   (4.3.25) 
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Corresponding to λi greater than 1, γ i  is positive and for λi less than 1, γ i is negative. So for a stable 

system γ i should be negative. 

Hence, either by finding λi or by finding γ i , the stability of the steady state solution can be determined. 

Example 4.3.1 

Use Floquet theory to study the stability of the following equation. 

1 2( ) ( ) 0u p t u p t u+ + =                                                                                                                              (4.3.26) 

With initial condition  

1 1 2 2(0) 1, (0) 0, (0) 0, (0) 1u u u u= = = =                                                                                     (4.3.27a) 

and after one cycle T =1 sec. let   

1 1 2 2( ) 4, (0) 0.5, (0) 2, (0) 2u T u u u= = = =                                                                              (4.3.27b) 

 

 

Solution 

Using the initial conditions (4.3.27 b) in the following equations  

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( )
( ) ( ) ( )

u t T a u t a u t
u t T a u t a u t

+ = +
+ = +

                                                                                                                  (4.3.28) 

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( )
( ) ( ) ( )

u t T a u t a u t
u t T a u t a u t

+ = +
+ = +

  

  

                                                                                                                  (4.3.29) 

one can obtain 

11 1 21 2 12 1 22 2( ), ( ), ( ), ( )a u T a u T a u T a u T= = = =                                                                     (4.3.30) 

Or 1 1

2 2

( ) ( )
( ) ( )

u T u T
A

u T u T
 

=  
 





                                                                                                                             (4.3.31) 

Finding the determinant of A I−λ  matrix one may write 

2 2 0λ αλ− + ∆ =                                                                                                                                          (4.3.32) 

where 
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1
1 2 1 2 1 22 [ ( ) ( )], ( ) ( ) ( ) ( )u T u T u T u T u T u T= + ∆ = −  α                                                                           (4.3.33) 

The parameter ∆ is known as the Wronskian determinant of 1( )u T  and 2 ( )u T .  

So in the present case, 3, 2 1 1= ∆ = − =α and hence 

2 6 1 0− + =λ λ  

Hence, 
13 36 4 5.828 and 0.1715
2

= ± − ⇒ =λ λ .  

As one of the λ value is outside the unit circle, the system is unstable. Also, one may find γ by using Eq. 
(4.3.25). As one of the γ is positive the system is unstable. 

 

Exercise problem 

Problem 4.3.1: Study the stability of Hill’s equation by using Floquet theory. 

Problem 4.3.2: Study the stability of Mathieu’s equation by using Floquet theory. 

Problem 4.3.3: Use Floquet theory to study the stability of the following equation. 

1 2( ) ( ) 0u p t u p t u+ + =                                                                                                                               

With initial condition  

1 1 2 2(0) 1, (0) 0, (0) 0, (0) 1u u u u= = = =                                                                                      

and after one cycle T =1 sec. let   

1 1 2 2( ) 6, ( ) 3, ( ) 1, ( ) 2u T u T u T u T= − = = =                   

 

                                                           

References: 

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley, 1979 
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Module 4 Lecture 4 

Limit cycles and Bifurcation of Periodic Response 

In this lecture a special case of periodic response i.e., the limit cycles is briefly discussed.  Also, 
the bifurcation analysis of the periodic response has been described. As discussed in the previous 
lecture, it may be noted that a solution is said to be periodic if it repeats with certain time period 
T. Hence, for a periodic solution x=X(t),  
 

( ) ( )X t T X t+ =                                                                                                             (4.4.1) 
      
So, for a  periodic solution  given by Eq. (4.4.1) it should have the following properties.                                                                                                
 Minimum period T 
 Form a closed orbit in phase portrait. 
 Could be treated as a fixed point in Poincare’ section  

 

Figure 4.4.1 (a) shows a periodic response cos( )u a t= +ω β where 3, 1, 3.15a ω β= = = − . The phase 
portrate is shown in Fig. 4.4.1(b) 
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Fig. 4.4.1: (a)Time response (b) Phase portrait 

 
• Limit Cycle: A periodic solution is said to be limit cycle if there is no other periodic 

solutions sufficiently close to it. 
• A limit cycle is an isolated periodic solution and corresponds to an isolated closed orbit in 

the state space 
• Every trajectory initiated near a limit cycle approaches it either as   or t t→∞ →−∞ . For 

example Figure 4.4.2 and 4.4.3 shows the phase portrait and time response for the  Van 
der pol’s equation with two different initial condition. The Van der pol’s equation is given 
by 

2(1 ) 0x x x x+ − − = λ .                                                                                        (4.4.2) 
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Fig. 4.4.2: (a) Phase portrait, (b) time response, (c) steady state phase portrait and (d) steady state 
time response with initial point (0.001,0.001) with λ = xxx . 

 

Fig. 4.4.3: (a) Phase portrait, (b) time response, (c) steady state phase portrait and (d) steady state 
time response with initial point (2.5,3.0). λ= ? 

While in Figure 4.4.2 the initial point is taken within the limit cycle in Figure 4.4.3 the initial 
point is taken outside the limit cycle. With increase in time it is clearly observed that both the 

initial points lead to the same limit cycle. It may be observed from Eq.4.4.2 that when 1x >

1x < , for positive λ , the system has a negative damping which makes the system to grow with time. 
Similarly, for 1x >  
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Existence of closed orbits 

To rule out existence of closed orbits following rules/theorems may be used. 

1. Closed orbits are impossible in gradient systems. 

A system which can be written in the form  ( )x V x= −∇   for some continuously differentiable, 
single valued scalar function ( )V x  is called a gradient function.  

Let ( , )x f x y= and ( , )y g x y= be a smooth vector field defined on phase plane. For this system 

to be a gradient system f g
y x
∂ ∂

=
∂ ∂

 

2. Dulac’s criterion: Let ( )x F x=  be a continuously differentiable vector field defined on a 
simply connected subset R of the plane. If there exists a continuously differentiable real valued 
function ( )g x  such that  ( )( ). g x∇    has one sign throughout R, then there is no closed orbit 
laying entirely in R.  

3. A system for which a Liapunov function can be constructed will have no closed orbits. 

Relaxation oscillation 

Let us again consider the van der pol’s oscillator 2(1 ) 0x x x x+ − − = λ when λ  greater than 1. 

 
 

  

Fig4.4.4(a) Time response, (b) phase portrait for vander pol’s oscillator with λ =10,with initial 
condition (0.2,0) . 

Figure 4.4.4 shows the time response and phase portrait for this oscillator when λ =10, with initial 
condition (0.2,0). By changing the initial condition to (2,0) Figure 4.4.5 shows the time response, velocity 
response  and phase portrait for this oscillator when λ =10. It can be observed from these two plots 
that unlike the periodic response shown in Fig. 4.4.1, here, the system has two widely separated time 
scales one for slow motion and one for fast motion as evident from the velocity response. This type of 
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oscillation is known as relaxation oscillation as the system relaxes or moves with very slow speed 
followed by a jump in the speed in a particular cycle. 

 

Fig 4.4.3(a) Time response, (b) velocity response, (c) phase portrait for van der pol’s oscillator 
with λ =10, with initial condition (2,0) . 

 
% Matlab code  Relaxation oscillation (van der pol's eqn) 
clc 
clear all 
global mu 
  
mu=10; 
  
 [T,Y] = ode45(@vdp_r,[0 30],[2 0]); 
 
subplot(1,3,1) 
 %figure(1) 
 
plot(T,Y(:,1),'-') 
  
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('x','fontsize',14,'fontweight','b'); 
grid on 
  
subplot(1,3,3) 
%figure(2) 
plot(Y(:,1),Y(:,2),'-'); 
  
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
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xlabel('x','fontsize',14,'fontweight','b');      
ylabel('Velocity','fontsize',14,'fontweight','b'); 
  
subplot(1,3,2) 
%figure(3) 
  
plot(T,Y(:,2),'-'); 
  
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('x','fontsize',14,'fontweight','b'); 
grid on 
 

function dz = vdp_r(t,z) 
%vander pol's oscillators: relaxation oscillation 
global mu 
  
dz = zeros(2,1);    % a column vector 
  
dz(1) = z(2); 
dz(2) = -(mu*(z(1)^2-1).*z(2))-z(1); 
 
 

 

Bifurcation Analysis of Periodic Response 

Similar to the bifurcation to the fixed point response, here also, a bifurcation in the periodic 
response occurs if by changing the control parameter one observes a qualitative or quantitative 
change in the system response branches. A bifurcation that requires at least m independent 
control parameters to occur is called a codimension-m bifurcation.   

As discussed in the previous lecture, a periodic response will be stable if all the eigenvalues of 
the monodromy matrix (Floquet multiplier) lies inside the unit Circle which is shown in Fig. 
4.4.6. When only one Floquet multiplier is located on the unit circle in the complex plane, the 
periodic solution is known as hyperbolic periodic solution. 

 

 

 

 

Fig. 4.4.4: Unit circle showing the real and imaginary parts of the eigenvalues.  

Real 

Imaginary 

1λ =  1λ = −
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If two or more Floquet multipliers are located on the unit circle in the complex plane then 
periodic response is known as non-hyperbolic periodic response. For 1λ >  the response is 
unstable. Similar to the bifurcation in the fixed point response, in periodic response also we have 
static and dynamic bifurcations. It should be noted that one of the Floquet multipliers associated 
with a periodic solution of an autonomous system of equations is always unity. 

By changing the control parameter if a Floquet multiplier leaves the unit circle through +1, one 
may observe one of the following three bifurcations. 

• Cyclic fold  
• Symmetry breaking 
• Transcritical Bifurcation 

If Floquet multiplier leaves the unit circle through -1 period doubling bifurcation occurs. 

Similarly if two complex conjugate Floquet multipliers leave the unit circle away from real axis, 
the resulting bifurcation is called secondary Hopf or Neimark bifurcation.  

Cyclic fold or turning point bifurcation 

Figure 4.4.7 shows the schematic diagram representing cyclic fold or turning point bifurcation in 
which the variation of amplitude of the periodic response is plotted with respect to the control 
parameter µ . Before the bifurcation point A, one observes a stable periodic and an unstable periodic 
response of the system which disappears after the bifurcation point. In some cases, a chaotic response 
may be observed after this cyclic fold bifurcation point and this behaviour of transition from periodic to 
chaotic response is termed as intermittent transition of type I to chaos. Hence, this type of bifurcations are 
dangerous, discontinuous and catastrophic type and the system should be operated below the critical 
bifurcation point. 

 

 

 

 

 

Fig. 4.4.7: Schematic diagram representing cyclic fold bifurcation.  

 

Symmetry breaking bifurcation 

Figure 4.4.8 shows the schematic diagrams in which the variations of amplitude of the periodic 
response with respect to the control parameter µ are plotted.  In Fig. 4.4.8(a), before point A, there 
exists a single stable periodic response and after this point one obtains three periodic solutions out of 
which the original branch is unstable and other two branches are stable. These periodic solutions are 

µ  

r 

A 
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shown in phase portrait in Fig. 4.4.7 (a) and (b). When one obtains stable periodic solution before 
and after the bifurcation, the bifurcation is supercritical bifurcation which is depicted in Fig. 
4.4.6 (a). 

 

 

 

 

 

 

 

Fig. 4.4.8: (a) Supercritical symmetry breaking bifurcation, (b) subcritical symmetry breaking 
bifurcation 

 

 

 

 

 

 

 

Fig. 4.4.8: (a) stable symmetric periodic response before bifurcation, (b) two stable unsymmetric 
and one symmetric unstable periodic response after bifurcation point. 

A situation similar to that shown in Fig. 4.4.8 (b) may also occur where at bifurcation point B, a 
stable and two unstable periodic branches meets to give rise to an unstable periodic branch. As 
an unstable periodic response is not physically attainable, the system will have a tendency to 
jump to a remote attractor which may be at infinity giving rise to a catastrophic failure to the 
system. This bifurcation is known as subcritical symmetry breaking bifurcation. 

Transcritical bifurcation 

Similar to the discussion made in the bifurcation in the fixed point response, here also in 
transition bifurcation, the branches of stable and unstable periodic response exchange their 
stability as shown in Fig. 4.4.10. 

µ  

r 

A 

r 

µ  

B 

x  

x  

x  

x  

µ  
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Fig. 4.4.10:  Schematic diagram representing transcritical bifurcation 

Period doubling or Flip bifurcation 

In this case, the stable periodic solution branch that exists before the bifurcation point continues 
as an unstable branch and a new branch of solution having period doubled that of the original 
solution originates. If a stable branch originates, then the bifurcation is supercritical and if a 
branch of unstable period-doubled solutions is destroyed it is called subcritical bifurcation. 

Secondary Hopf or Neimark Bifurcation 

In this case, after the bifurcation the bifurcating solution may be periodic or two period quasi-
periodic depending on the relation between the newly introduced frequency and the frequency of 
the original periodic solution that existed before the bifurcation. Here also one may have 
subcritical and supercritical bifurcations. 

Exercise Problems: 

Numerically solve the equations given in the following refferences for different system parameters 

1.S. K.  Dwivedy and R. C. Kar, Dynamics of a slender beam with an attached mass under 

combination parametric and internal resonances, Part II: Periodic and Chaotic response.  Journal 

of Sound and Vibration, 222, no 2, 281-305, 1999. 

2. S. K. Dwivedy and R. C. Kar, Dynamics of a slender beam with an attached mass under combination 
parametric and internal resonances, Part I: steady state response. Journal of Sound and Vibration, 221, 
no 5, 823-848, 1999 
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Module 4 Lecture 5 

Quasi-periodic and Chaotic response 

In the previous lectures in this module we have discussed about fixed point and periodic 
responses and in this lecture we will discuss about the quasi-periodic and chaotic responses.  

 Quasiperiodic Response 

Consider the response ( )x t  of a system which contains two frequency terms as given below. 

( ) sin sinx t x t x tω ω= +1 1 2 2  

This response will be periodic if the ratio between the two frequencies is a rational number and if 
the frequencies are incommensurable i.e., if this ratio is an irrational number, then the response will be 
quasi-periodic. For example consider , ,  x xω ω= = = =1 2 1 22 2 2 10 . In this case the ratio is 2  
which an irrational number. The time response is shown in Figure 4.5.1. 

 

Fig. 4.5.1: Time response of a typical quasi-periodic response 

 

x  
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Fig. 4.5.2: (a) Phase portrait and Poincare’ section of the response 
 

Few more examples are given in Figure 5.4.3 and 5.4.4 where the time response, phase portrait 
and the Poincare’ sections are plotted. It may be observed from the phase portrait that the 
structure is that of a torus and the Poincare’ section is a closed curve.  It may be noted that in 
case of commensurable frequencies, one obtains multiple loops in the phase portraits and discrete 
points in the Poincare section.   
 

 

Fig. 4.5.3: (a) Time response, phase (b) portrait and (c) Poincare’ section for 

( )( ) sin sinx t t t= +5 2 2 2  

 

 

Fig. 4.5.4: (a) Time response, (b) phase portrait and (c) Poincare’ section for 
( )( ) sin sinx t t t= +10 2 2 5  

x  

x  

x  
x  

x  x  
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Fig. 4.5.4: (a) Time response, phase portrait and Poincare’ section for 

( )( ) sin sinx t t t= +5 2 2 11  

Similarly, one may solve the following Duffing equation with two forcing terms having 
incommensurable frequencies using Runge-Kutte  method. One may use the ode45 function of 
Matlab for this purpose. The Matlab code is also given below and the obtained time response  

( )
cos cos

( ) cos cos

x x x x t t
x x x x

x x x x t t

+ + + = +

= =

= − + + + +

 



 

3

1 2 1

3
2

2 2 2 2

2 2 2 2

 

 

 

clc  
% Time Response  and Phase portrait of    Duffing Oscillator 
  
global muglobal mu om1 om2 alpha 
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mu=0.8; 
alpha=0.1 
om1=2; 
om2=2*sqrt(2); 
  
[T,Y] = ode45(@ff22,[0 5000],[0.01 -0.3]); 
ns=length(Y); 
nm=floor(ns*0.9); 
figure(1) 
plot(Y(nm:ns,1),Y(nm:ns,2),'r','linewidth',2) 
set(gca,'FontSize',15) 
xlabel('\bfx','Fontsize',15) 
ylabel('\bf u','Fontsize',15) 
grid on 
 

function dy = ff22(t,y) 
global mu om1 om2 alpha 
  
dy = zeros(2,1);    % a column vector 
dy(1) = y(2); 
dy(2) =cos(om1)+cos(om2) -y(1)-alpha*y(1)^3-2*mu*y(2); 
figure(2) 
subplot(2,1,1) 
plot(T(nm:ns),Y(nm:ns,1),'linewidth',2) 
grid on 
set(gca,'FontSize',15) 
xlabel('\bf Time','Fontsize',15) 
ylabel('\bfx','Fontsize',15) 
subplot(2,1,2)  
  
plot(T(nm:ns),Y(nm:ns,2),'linewidth',2) 
grid on 
set(gca,'FontSize',15) 
xlabel('\bf Time','Fontsize',15) 
ylabel('\bfx','Fontsize',15) 
 

Rotational number 
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The discrete points on a Poincare’ section of a two-period quasi-periodic orbit fall on a closed 
curve  
 

 

 

 

 

 

 

 

Winding number 

Winding time represents the average number of  iterates required to get back to  
 

The inverse of the winding time is called the winding number or the rotational number.    
 

 

 

5.2 Chaotic Response 

 A chaotic solution is a bounded steady-state behaviour that is not an equilibrium solution 
or periodic or quasi-periodic solution. 

 Chaotic attractors are complicated geometrical objects that possess fractal dimensions. 
 Unlike spectra of periodic and quasi-periodic attractors which consists of a number of 

sharp spikes, the spectrum of chaotic signal has a continuous broadband character. 
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 In addition to the broadband components, the spectrum of a chaotic signal often contains  
spikes that indicate the predominant frequencies of the signal. 

  Sensitive to initial condition: Butterfly effect 
 A chaotic motion is the superposition of a very large number of unstable periodic motion. 
 Thus a chaotic system may dwell for a brief time on a motion that is very nearly periodic 

and then may change to another periodic motion with period that is k times that of the 
preceding motion.  

 This constant evolution from one periodic motion to another produces a long-time 
impression of randomness while showing a short-term glimpses of order.   

 

Routes to Chaos 
 Period doubling Route to Chaos 
 Quasi-periodic route to chaos 
 Intermittency and Crises route to chaos 

Different Route to Chaos 

5.2.1: Period doubling route to chaos 

   
 

 

 

( )

( )

= − +

= +

= + −







Rossler Equation
x y z
y x ay
z b x c z
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Feigenbaum number 
Feigenbaum showed that the sequence of period doubling control parameter values scales 
according to the law 
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This number is same for all period-doubling sequence associated with smooth maps having a 
quadratic maximum  
5.2.2: Quasi-periodic route to chaos (Torus doubling route to chaos) 

 
 

 

 Cascade of torus break down doubling route to chaos (a) Phase portrait of quasi-periodic 
orbit  (b) chaotic orbit  

 
5.2.3Torus breakdown route to chaos 
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5.2.4Crises 

Interior Crises: 

Chaotic attractor come in contact with unstable fixed point and explodes to form a larger chaotic 
attractor which contain the original attractor within it.  Figure shows an interior crisis observed in 
a parametrically excited cantilever beam with arbitrary lumped with 1:3 internal resonance.  
 

 

 
Original attractor 

 
 

 

Interior crisis: Chaotic attractor for (Kar and Dwivedy 1999) 

Unstable fixed point 
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(Kar and Dwivedy 1999) 
 
Attractor merging Crises: In this case two chaotic attractors come in contact to form a larger 
chaotic attractor giving rise to attractor merging crisis. 
 
Exterior Crises This crisis occurs when a chaotic attractor suddenly destroyed as the control 
parameter passes through its critical value. The post bifurcation point may be a fixed-point, periodic, 
quasi-periodic or chaotic response. [Nayfeh and Balachandran, 1995] 
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