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Module 1 Lecture 1 
 
In this lecture the course outline and the module and lecture wise breakup of the nonlinear 
vibration course are discussed. Also, the list of reference books, journals have been given. 
  
Course Outline 
 
Introduction: linear and nonlinear systems, conservative and non-conservative systems; potential 
well, Phase planes, types of forces and responses, fixed points, periodic, quasi-periodic and chaotic 
responses; Local and global stability; commonly observed nonlinear phenomena: multiple response, 
bifurcations, jump phenomena. 
 
Development of nonlinear governing equation of motion of Mechanical systems, linearization 
techniques, ordering techniques; commonly used nonlinear equations: Duffing  equation, Van der 
Pol’s oscillator, Mathieu’s and Hill’s equations. 
 
Analytical solution methods: Harmonic balance, perturbation techniques (Linstedt-Poincare’, 
method of Multiple Scales, Averaging – Krylov-Bogoliubov-Mitropolsky), incremental harmonic 
balance, modified Lindstedt Poincare’ techniques. 
 
Stability and bifurcation analysis: static and dynamic bifurcations of fixed point and periodic 
response, different routes to chaotic response (period doubling, torus break down, attractor merging 
etc.), crisis. 
 
Numerical techniques: time response, phase portrait, FFT, Poincare’ maps, point attractors, limit 
cycles and their numerical computation, strange attractors and chaos; Lyapunov exponents and their 
determination, basin of attraction: point to point mapping and cell to cell mapping.  
 
Application: Single degree of freedom systems: Free vibration-Duffing’s oscillator; 
primary-, secondary-and multiple- resonances; Forced oscillations: Van der Pol’s 
oscillator; parametric excitation: Mathieu’s and Hill’s equations, Floquet theory; effects of 
damping and nonlinearity. Multi degree of freedom and continuous systems. 
 
Course Pre-requisites :  Mechanical Vibration, Engineering Mechanics 
 
Text/References 
 
1. Nayfeh, A. H., and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, 1979. 
2. Hayashi, C. Nonlinear Oscillations in Physical Systems, McGraw-Hill, 1964. 
3. Evan-Ivanowski, R. M., Resonance Oscillations in Mechanical Systems, Elsevier, 1976. 
4. Nayfeh, A. H., and Balachandran, B., Applied Nonlinear Dynamics, Wiley, 1995. 
5. Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, Elsevier, 
1988. 
6. Moon, F. C., Chaotic & Fractal Dynamics: An Introduction for Applied Scientists and 
Engineers, Wiley, 1992. 
7. Rao, J. S., Advanced Theory of Vibration: Nonlinear Vibration and One-dimensional Structures, 
New Age International, 1992. 
 
8. A. H. Nayfeh Perturbation Methods, Wiley, 1973 

9. A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley,  1981 
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10.Wanda Szemplinska-Stupnicka, The Behavior of Nonlinear Vibrating Systems, Vol 1 

&2, Kluwer Academic Publishers, 1990 

11. Matthew Cartmell, Introduction to Linear, Parametric and Nonlinear Vibrations, 

Chapman and Hall, 1990. 

12. T. S. Parker and L. O. Chua: Practical Numerical Algorithms for Chaotic Systems, 

Springer-Verlag, 1989 

13. A. H. Nayfeh, Method of Normal forms, Wiley, 1993. 

 
Journals 
 
 International Journal of Non-linear Mechanics (ELSEVIER)  

 Nonlinear Dynamics (SPRINGER)  

 Journal of Sound and Vibration (ELSEVIER) 

 Journal of Vibration and Acoustics (ASME) 

 Journal of Dynamical Systems, Measurements and Control (ASME) 

 Physics D: Nonlinear Phenomena (ELSEVIER) 

 Chaos, Solitons and Fractals (ELSEVIER) 

 International Journal of Nonlinear Sciences and Numerical Simulation, (Freund 

Publishing House) 

 Journal of Computational and Nonlinear Dynamics (ASME) 

Detailed  Course Plan : (Module wise / Lecture wise) 
 
Sl, 
No 

Module Lecture 
No 

Content 

1 1 
Introduction 

1 Mechanical vibration: Linear and nonlinear systems, types of 
forces and responses, Review of linear system: free vibration. 

2 2 Review of Linear system: SDOF forced vibration, two degrees 
of freedom and continuous system,  

3 3 Introduction to qualitative analysis of conservative systems, 
equilibrium points, potential well, centre, focus, saddle-point, 
cusp point Commonly observed nonlinear phenomena: multiple 
response, bifurcations, and jump phenomena and basin of 
attraction. 

4 2 
Derivation of 
nonlinear 
equation of 
motion 

1 Force and moment based approach:single degree of freedom 
system 

5 2 Force and moment based approach: multi degree of freedom 
system 

6 3 d’ Alembert’s Principle: Continuous System 
7 4 Extended Hamilton’s Principle 
8 5 Lagrange Principle 
9 6 Development of temporal equation using Galerkin’s method for 
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continuous system 
10 7 Ordering techniques, scaling parameters, book-keeping 

parameter. Commonly used nonlinear equations 
11 3 

Approximate 
solution 
method 
 
Perturbation 
analysis 
method 

1 Straight forward expansions and sources of nonuniformity 
12 2 Linstedt-Poincare’ method  
13 3 Modified Lindstedt-Poincare’ Technique 
14 4 Method of multiple scales  
15 5 Method of multiple scales: Applied to forced vibration system 

Method of Averaging 
16 6 Harmonic Balancing method 
17 7 Method of Averaging 
18 8 Generalized Method of Averaging 
19 9 Method of normal form 
20 10 Incremental Harmonic Balance method 
21  11 INTRINSIC MULTIPLE SCALE HARMONIC BALA  

METHOD 
22  12 HIGHER ORDER METHOD OF MULTIPLE SCALES 
23 4 

Stability and 
Bifurcation 
Analysis 

1 Stability analysis of fixed point response 
24 2 Bifurcation analysis of fixed point response 
25 3 Stability analysis of Periodic response 
26 4 Limit cycles and Bifurcation of Periodic Response 
27 5 Quasi-periodic and Chaotic response 
28 5 

Numerical 
techniques 

1 Review of numerical solution of algebraic equations, solution of  
differential equations to obtain time response of nonlinear 
systems  

29 2 Methods of model reduction and continuation techniques 
30 3 Poincare section, basin of attraction and Liapunov exponent 
31   6 

Applications 
1 Single degree of freedom Nonlinear conservative systems with 

Cubic nonlinearities. 
32 2 Single degree of freedom nonlinear conservative systems with 

quadratic and Cubic and nonlinearities. 
33 3 Single degree of freedom non-conservative systems: viscous 

damping, quadratic and Coulomb damping 
34 4 Non-conservative systems: Negative damping, van der Pol 

oscillator,simple pendulum with quadratic damping 
37 5 Single degree of freedom Nonlinear systems with Cubic 

nonlinearities:  Primary Resonance 
36 6 Single degree of freedom nonlinear systems with Cubic 

nonlinearities: Nonresonant Hard excitation 
35 7 Single degree of freedom Nonlinear systems with Cubic and 

quadratic nonlinearities and self sustained oscillations 
38 8 Multi-degree of freedom nonlinear systems 
39 9 Parametrically excited system: Floquet theory, Hill’s infinite 

determinant 
40 10 Parametric Instability region:  sandwich beam vibration 
41 11 Base excited magneto-elastic cantilever beam with tip mass 
42 12 System with internal resonance:  Two-mode interaction:  Base 

excited cantilever beam with tip mass at arbitrary position 
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INTRODUCTION TO NONLINEAR MECHANICAL SYSTEMS 
 

In this lecture the vibration of linear and nonlinear dynamical systems have been briefly 
discussed. Both inertia and energy based approaches have been introduced to derive the 
equation of motion. Review of linear single degree of freedom system free vibration is 
carried out. 
 
Introduction 

 
Any motion that repeats itself after an interval of time is called vibration or oscillation. The 
swinging of a pendulum (Fig.1.1.1) and the motion of a plucked string are typical examples 
of vibration. The theory of vibration deals with the study of oscillatory motion of bodies 
and forces associated with them. 
 
Elementary Parts of Vibrating system 

• A means of storing potential energy (Spring or elasticity) 
• A means of storing kinetic energy (Mass or inertia) 
• A means by which energy is gradually lost (damper) 

The forces acting on the systems are   
• Disturbing forces 
• Restoring force 
• Inertia force 
• Damping force 

Degree of Freedom: The minimum number of independent coordinates required to 
determine completely the position of all parts of a system at any instant of time defines the 
degree of freedom of the system. 
System with a finite number of degrees of freedom are called discrete or lumped parameter 
system, and those with an infinite number of degrees of freedom are called continuous or 
distributed systems. 
 
Classification of Vibration:  

• Free and forced  
• Damped and undamped 
• Linear and nonlinear 
• Deterministic and Random 
 

Free vibration: If a system after initial disturbance is left to vibrate on its own, the ensuing 
vibration is called free vibration. 
 
Forced Vibration: If the system is subjected to an external force (often a repeating type of 
force) the resulting vibration is known as forced vibration 
 
Damped and undamped: If damping is present, then the resulting vibration is damped 
vibration and when damping is absent it is undamped vibration. The damped vibration can 
again be classified as under-damped,   critically-damped and over-damped system 
depending on the damping ratio of the system. 
Linear vibration: If all the basic components of a vibratory system – the spring the mass 
and the damper behave linearly, the resulting vibration is known as linear vibration. 
Principle of superposition is valid in this case. 

Fig. 1.1.1: Swinging of a Pendulum 
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Nonlinear Vibration: If one or more basic components of a vibratory system are not linear 
then the system is nonlinear. All most all the system can be modelled as a nonlinear 
system. 
Depending on excitation:  
Deterministic: If the value or magnitude of the excitation (force or motion) acting on a 
vibratory system is known at any given time, the excitation is called deterministic. The 
resulting vibration is known as deterministic vibration. 
Random Vibration: In this cases the value of the excitation at any given time can not be 
predicted. Example. Wind velocity, road roughness and ground motion during earth quake 
etc.  
 
2. Linear and Nonlinear systems                                                     
                                                                                            
A system is said to be linear or nonlinear depending on the force response characteristic of 
the system.  The block diagram relating to output x(t) and input f(t) of a dynamical system 
can be represented as shown in Fig 1.1.2(a) and mathematically represented as shown in 
Fig. 1.1.2(b).  
 
 
 
               (a)                                                                     (b) 
Fig.1.1. 2: (a) Block diagram showing the force-response and (b) mathematical 
representation of the input and the output through the operator D(t). 
 
A linear system may be of first  or second order depending on the presence of the basic 
elements. A typical first order system with linear spring and viscous damping is shown in 
Fig. 1.1. 3(a) and that of a second order system is shown in Fig.1.1.3 (b) as they can be 
represented by ( )cx kx F t+ =  and ( )mx cx kx F t+ + =   respectively. 
 
As shown in Fig. 1.1 2(b), a system can be represented by using a operator D such that  
Dx(t) = f(t), where D is the differential operator, x(t) is the  response and f(t)  is the  
excitation input.                                                                          
A system )()( tftDx =  is said to be linear if it satisfies the following two conditions. 
 

1. The response to )(tfα  is ),(txα where α  is a constant. 
2. The response to )()( 21 tftf +  is )()( 21 txtx + where the )(1 tx is the response to 

)(1 tf and )(2 tx is the response to )(2 tf  
 
 
 
 
 
 
 
  
                                                                   
 

 
Fig 1.1.3(a) First order system (b) second order system 

         D(t) x(t)    f(t) 

F(t) 

(a) 

k 

c 

F(t) 

(b) 

k 
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m 

System ( )x t
 

( )f t
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In case ( ( )) ( )D x t Dx tα α= , the operator D and hence the system is said to posses 
homogeneity property and   when [ ]1 2 1 2( ) ( ) ( ) ( )D x t x t Dx t Dx t+ = + the system is said to 
posses additive property.     If an operator D does not possess the homogeneity and 
additivity property the system is said to be nonlinear.    
  
Example 1: Check whether system given by the following is linear or nonlinear  

2
2

0 1 22

( ) ( )( ) ( ) ( ) ( ) 1 ( ) ( )d x t dx tDx t a t a t a t x t x t
dt dt

ε = + + −                                    (1.1.1) 

where, ε  is a const ant 
Solution:  check the homogeneity 

[ ]
2

2 2
0 1 22

( ) ( )( ) ( ) ( ) ( ) 1 ( ) ( )d x t dx tD x t a t a t a t x t x t
dt dt

α α α α εα = + + −  ≠α Dx(t) (1.1.2) 

Hence homogeneity condition is not satisfied  
Similarly substituting 1 2( ) ( ) ( )x t x t x t= +                                                        (1.1.3) 
One obtains 
[ ]1 2 1 2( ) ( ) ) ( ).D x t x t Dx t Dx t+ ≠ +                                                                     (1.1.4) 

 which does not satisfy additive property also. Hence the system is a nonlinear system.  It 
may be noted that, the term containing ε  causes the nonlinearity of the system. If 0,ε = the 
equation becomes linear by satisfying both homogeneity and additive properties. 
 
Hence it may be observed that 

1) A system is linear if the function )(tx and its derivatives appear to the first (or zero) 
power only; otherwise the system is nonlinear. 

2) A system is linear if 10 ,aa and 2a depend as time alone, or they are constant. 
 

 Steps for Vibration Analysis  
• Convert the physical system to simplified mathematical model  
• Determine the equation of motion of the system 
• Solve the equation of motion to obtain the response 
• Interpretation of the result for the physical system. 

To convert the physical system into simpler models one may use the concept of equivalent 
system. To determine the equation of motion basically one may use either the vector 
approach with the Newtonian approach or d’Alembert principle based on free body 
diagram or one may go for scalar approach using the energy concept. In scalar approach 
one may use Lagrange method, which is a differential procedure or extended Hamilton’s 
principle based on integral procedure. Different methods/laws/principle used to determine 
the equations of motion of the vibrating systems are briefly introduced below. In module 2 
they are described in detail.  
 
Derivation of Equation of motion 
 
Depending on coordinate:  
 In Newtonian mechanics motions are measured relative to an inertial reference frame, i.e, a 
reference frame at rest or moving uniformly relatively to an average position of “ fixed 
stars” and displacement, velocity and acceleration are absolute values. 
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Generalized coordinate: These are a set of independent coordinates same in number as that 
of the vibrating system. For example, the motion of a double pendulum in planar motion 
can be represented completely either by  1 2,θ θ  the rotation of the first and second link 
respectively or by 1 1 2 2, , ,x y x y  the Cartesian coordinates of first and second links. While in 
the later case 4 coordinates are required to represent completely the system, in the former 
case only 2 coordinates are required for the same. Hence, in this case 1 2,θ θ  is the 
generalized co-ordinate while 1 1 2 2, , ,x y x y are not the generalized one. One may note that 
these four coordinates are not independent and can be reduced to two by the use of length 
constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1.4. Illustration of physical and generalized coordinates in a double pendulum 
 
Newton’s second law A particle acted upon by a force moves so that the force vector is 
equal to the time rate of change of the linear momentum vector. 
 
 
 
 
 
 

Fig. 1.1.5 Application of Newton’s second law 
Taking, iv -initial velocity, fv -final velocity, and   t  time, according to Newton’s 2nd law 

 
 
                                         (1.1.5) 
 
Work energy principle 
 
The work performed by a force F in moving a particle of mass M from position 1r

  to 2r
  is 

equal to the change in kinetic energy.  
2 2

1 1
2 2 1 1

1 1 1. . .
2 2 2

r r

r r
F dr d mrr mr r mr r = = − 

 ∫ ∫






     

    

12 TT −=                                            (1.1.6) 

Here T1 and T2 are the Kinetic energy in position 1 and 2 respectively. 
It can be shown that 

Inertia force  -ma 

    Mass m 
Force F Acceleration 

a 

f iv v
F m ma

t
− 

= = 
 

 

1θ  

2θ  

( )1 1,x y  

( )2 2,x y  
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• Force for which the work performed in moving a particle over a closed path is zero 
(considering all possible paths) are said to be conservative force. 

• Work performed by a conservative force in moving a particle from 1r
  to 2r

  is equal 
to the negative of the change in potential energy from V1 to V2. 

• Work performed by the nonconservative forces in carrying a particle from position 
1r  to position 2r  is equal to the change in total energy  

 
d’Alembert Principle The vectorial sum of the external forces and the inertia forces acting 
on a moving system is zero. Referring to  Fig. 1.1.5 according to d’Alembert 
Principle ( ) 0F ma+ − =  where ma−  is the inertia force. 
 
Generalized Principle of d’Alembert: 
The virtual work performed by the effective forces through infinitesimal virtual 
displacements compatible with the system constraints is zero. 

( ) δ
=

− =∑
  



1
 . 0

N

i ii i
i

F m r r                                                                                          (1.1.7) 

 
Extended Hamilton’s Principle 
 
For a system with Number of Particle one can conceive of a 3N dimensional space with the 
axes ix , iy , iz  and represent the position of the system of particles in that space and at any 
time t  the position of a representative point P with coordinate ( )ix t , ( )iy t , ( )iz t  where  i 
= 1,2,…N.  The 3N dimensional space is known as the Configuration Space. As time 
unfolds, the representative point P traces a curve in the configuration space called the true 
path, or the Newtonian path, or the dynamical path. At the same time let us think of a 
different representative point P′  resulting from imagining the system in a slightly different 
position defined by the virtual displacement irδ  (i = 1,2…N). As time changes the point 
P′  traces a curve in the configuration space known as the Varied Path. 
 

 
Fig1.1.6:  True and Varied  path 

 
Of all the possible varied path, now consider only those that coincide with the true path at 
the two instants 1t  and 2t  as shown in Fig.1.1.6. the Extended Hamilton’s Equation in 
terms of Physical coordinates q can be given by 

                  ( ) ( ) ( )δ δ δ δ+ = = = =∫
2

1

1 1 2 20,  0, 1,2,....
t

t

T W dt r t r t i N       (1.1.8) 
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where Tδ is the variation in kinetic energy and δW  is the variation in the work done. But 
in many cases it is desirable to work with generalized coordinates. As Tδ  and δW  are 
independent of coordinates so one can write 

( )δ δ+ =∫
2

1

0,
t

t

T W dt  ( ) ( ) 0k kq t q tδ δ= =                                                            (1.1.9) 

where k = 1, 2,…n, n = no of dof of the system. The extended Hamilton’s principle is very 
general and can be used for a large variety of systems. The only limitation is that the virtual 
displacement must be reversible which implies that the constraint forces must perform no 
work. Principle cannot be used for system with friction forces. 
In general δ δ δ= +c ncW W W  (subscript c refers to conservative and nc refers to the 
nonconservative). Also,δ δ= −cW V . Now introducing  Lagrangian = −L T V , the 
extended Hamilton’s principle can be written as 

( )δ δ+ =∫
2

1

0
t

nc
t

L W dt , ( ) ( )1 2 0k kq t q tδ δ= = ,                                                (1.1.10) 

where k= 1,2,…..n 
For conservative system  δ = 0ncW , Eq. (1.1.10) reduces to 

 ( ) ( )δ δ δ= = =∫
2

1

1 20,   0
t

k k
t

Ldt q t q t                                                      (1.1.11) 

which is known as the Hamilton’s Principle. 
 
Lagrange Principle  
 
The Lagrange principle for a damped system can be written as 
 

k
d L L D Q
dt q q q
     ∂ ∂ ∂

− + =     ∂ ∂ ∂      

                                                                             (1.1.12) 

where 
ω∂ ∂

= + =
∂ ∂∑ ∑


. . , 1,2,....i i
k I I

i ik k

rQ F M k n
q q

                                                          (1.1.13) 

where L is the Lagrangian given by L=T-U, T is the kinetic energy and U is the potential 
energy of the system. D is the dissipation energy and Qk is the generalized force. Fi and Mi 
are the vector representation of the externally applied forces and moments respectively, the 
index k indicates which external force or moment is being considered, ri is the position 
vector to the location where the force is applied, and iω is the system angular velocity 
about the axis along which the considered moment is applied.  
  
Modeling of the system 
 

• Single degree of freedom system 

•  Two degree of freedom system 

•  Multi-degree of freedom system 

•  Continuous system 
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Review of Linear system 

Single Degree of Freedom Systems  

Steady state response due to Harmonic Oscillation 
 

 
Fig 1.1.7 Spring –mass- damper system subjected to harmonic excitation 

 
Equation of motion of the system with mass m , stiffness k , damping factor c  and forcing 
amplitude F and forcing frequency ω  can be given by the following equation. 

sin  mx cx kx F t+ + =  ω                                                                                   (1.1.14) 
This can also be written as  
 ( )2 2 sin  /n nx x x tF m+ + = ω ζω ω                                                                    (1.1.15) 

Here, ( )/=n k mω is the natural frequency, 
22

 = = 
 n

c c
mmk

ζ
ω

is the damping ratio 

of the system. 
 
For free vibration of the system the forcing term can be made zero and the equation can be 
written as  

0+ + = mx cx kx                                                                                               (1.1.16) 
 
Free Vibration response of the system 
 
• For undamped system ( 0=ζ ) 

( ) cos sinω ω= +n nx t a t b t                                                                                  (1.1.17) 
Here a  and b are constants to be determined from the initial conditions. The system will 
vibrate with natural frequency and the response amplitude depends on the initial 
displacement and velocity of the system. 
 
• For under damped system ( )0<ζ  
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                                                                     (1.118) 
Where X and ψ are constants to be determined from initial coditions 
 
• For critically damped system 1=ζ  
• For over damped system 1>ζ  

0 0.5 1 1.5 2 2.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

t

x

 
 
Fig. 1.1.8: Time response showing under-damped, over-damped and critically damped 

system.  Here, 1 kg, 100 N/m= =m k  

Fig 1.1.8 shows the time response of a system with Mass m =1, stiffness K=1000w/m for 3 

different values of damping representing under damped, critically damped and over 

damped system. 

Forced vibration response 
 
For an under damped system the solution of the () equation is given below.  

( )
2

1 22 2
( ) sin( 1 ) sin( )

(Transient part
Steady state resp

)

onse

ζω ζ ω ψ ω φ
ω ω

−= − + + −
− +



nt
n

Fx t x e t t
k M c

              (1.1.19) 

 
Exercise Problem 
 
1. Using principle of superposition check whether the following systems are linear or 
nonlinear. 
(a) 2 100 10 0.2cos 2 0.5sin 2x x x t t+ + = +   
(b) 22 10 100 10 0.2cos 2x x x x t+ + + =   
(c) 32 10 100 10 0.2cos 2x x x x t+ + + =   

C =15 N-s/m, Over damped System 

C =5 N-s/m, under damped System 

C = 10 N-s/m, critically  damped System 
 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 13 of 31 
 
 

(d) ( )2 10 100 02cos 2x x x xt+ + + =   
(e) ( ) 32 10 100 5 02cos 2x x x x xt+ + + + =   
 
2. Write a Matlab code to plot the response of a spring-mass-damper system subjected a 
harmonic force sinF tω . Take  

1 kg, 100 N/m, c=100 N-s/m, F=1 N, (a) =2rad/s, (b) =10rad/s, (c) = 20 rad/sm k= = ω ω ω   
 
 
 
 
 

Module 1 Lecture 2 
 
Review on Linear Vibrating Systems  
 
In this lecture review of the linear Vibrating system has been carried out. Here Problem 
related single, two and multi degree of freedom system have been discussed for both free 
and forced vibrant response. Also, analyzing of continuous system has been carried out.  
 
Review of SDOF system with Harmonic forcing  
 
Example 1.2.1: 
Find the response of single degree of freedom systems with harmonic forcing. 
Solution 

         
 
 
 
Figure 1.2.1(a) show a spring-mass-damper system subjected to harmonic 
forcing ωsin( )F t .  Let , ,m c k represent mass, stiffness and damping factor of the system. 
The equation of motion of the system can be given as 
 

 sin+ + = mx cx kx F tω                                                                                        (1.2.1) 
 
Taking OX as the reference line, the force polygon shows all the forces viz., spring 
force(kx), damping force(cωx), inertia force(mω2x) and external force(F). From the figure, 
it is clear that the angle between the external force and the displacement vector is φ . The 
steady state response of the system can be given by 

( )sin  x X t= −ω φ                                                                                            (1.2.2) 

Figure 1.2.1 (a) Spring-mass damper system (b) Force polygon 

φ
 O X 
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Here, 
( ) ( )

0
2 22

F

k m cω ω
Χ =

− +
                                                                        (1.2.3) 

and 1
2tan c

k m
ωφ
ω

−=
−

                                                                                         (1.2.4) 

 
Recalling,   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One can write 

ω ω
ζ

ω ω

=
      
− +            

0
2 22

1 2
n n

XX and 

ω
ζ

ω
φ

ω
ω

−

 
 
 =
 

−  
 

1
2

2
tan

1

n

n

                         (1.2.5) 

 
The total response of the system is the summation of transient and steady state response 
which is given below. 
 

( ) ( ) ( )sin
     sinnt

n

n n

tFX t x e t
k

ζω ω φ
ζ ω φ

ω ωζ
ω ω

− −
= − + +

    
 − +   
     

2 0
1 1 22 2

1

1 2

 (1.2.6) 

   
As the ratio /F k  is the static deflection (Xo) of the spring, 0/ /Xk F X X=  is known as 

the magnification factor or amplitude ratio of the system. Figure 1.2.2 shows the 

magnification factor ~ frequency ratio and phase angle (φ  )~ frequency ratio plot. 

 Following observations can be made from these plots.  

n
k
m

ω = = natural frequency 

2c nc mω=  = Critical damping 

=
c

c
c

ζ  = damping ratio 

ω ωζ
ω

= = 2c

c n

cc c
k c k

 

= 2 n
c
m

ζω  
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• For undamped system (i.e., 0ζ = ) the magnification factor tends to infinity when 

the frequency of external excitation equals natural frequency of the system 

( 1.
n

ω
ω

= ).  

• But for underdamped systems the maximum amplitude of excitation has a definite 

value and it occurs at a frequency 1.
n

ω
ω

<  

• For frequency of external excitation very less than the natural frequency of the 

system, with increase in frequency ratio, the dynamic deflection (X) dominates the 

static deflection (X0), the magnification factor increases till it reaches a maximum 

value at resonant frequency ( rω ). 

•  For rω ω> , the magnification factor decreases and for very high value of 

frequency ratio (say 2
n

ω
ω

> ), the vibration is very much attenuated.  

• One may observe that with increase in damping ratio, the resonant response 

amplitude decreases.  

• Irrespective of value of ζ , at 1
n

ω
ω

= , the phase angle 090φ = . 

• For 1
n

ω
ω

< , phase angle 090φ < . 

• For, 1
n

ω
ω

> phase angleφ approaches 1800 for very low value of ζ . 

• From phase angle ~frequency ratio plot it is clear that, for very low value of 

frequency ratio, phase angle tends to zero and at resonant frequency it is 900 and for 

very high value of frequency ratio it is 1800. 

• The resonant frequency ω ζ ω= − 21 2r n and  

• The resonant amplitude of vibration 
ζ ζ

=
−
0

22 1
XX  
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Figure 1.2.2:  (a) Magnification factor ~ frequency ratio and (b) phase angle ~frequency 
ratio for different values of damping ratio.  
 
Here, it may be noted that one can convert this linear spring-mass-damper system into a 
nonlinear system by introducing nonlinearity in mass, stiffness and damping terms. 
 
Support Motion: 

 

 
 
Consider a system as shown in Fig. 1.2.3 where the support is moving with siny y tω= . It 

is required to find the motion of mass m which is supported by spring and damper with 

spring constant k and damping factor c. The equation of motion of the system is given by 

 

 

Figure 1.2.3: A system subjected to support motion Figure 1.2.4: Freebody diagram 

mx  

( )c x y−   ( )k x y−  

m  
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( ) ( )mx k x y c x y= − − − −                                       (1.2.7) 

Substituting  z=x-y                                                  (1.2.8) 

In Eq. (1.2.8) one obtains 
2 sinmz kz cz my m y tω ω+ + = − =                                        (1.2.9) 

The solution of this equation can be given by 
sin( )z Z tω φ= −                                                                                               (1.2.10) 

where, 
2

2 2 2( ) ( )
m yZ

k m c
ω
ω ω

=
− +

 and 2tan c
k m

ωφ
ω

=
−

                    (1.2.11) 

Taking sin( )x X tω ϕ= −                                                                            (1.2.12) 

One can obtain 
2 2

2
Im i tk m ic mx Ye

k m ic
ωω ω ω

ω ω
  − + +=   − +  

                                                       (1.2.13) 

 From which one obtains                       

( )
( ) ( )

2

22 2

1 2

1 2

rX
Y r r

ζ

ζ

+
=

 − + 

                                                                           (1.2.14) 

where / nr ω ω=  
 
 

 
 
 
 
From figure 1.2.5, it is clear that when the frequency of support motion nearly equals to the 

natural frequency of the system, resonance occurs in the system. This resonant amplitude 

decreases with increase in damping ratio for 2r < . At 2r = , irrespective of damping 

0ζ =  
 

0.05ζ =
 

 0.1ζ =  
 

1ζ =  
 

1ζ =  
 

0ζ =  
 

Figure 1.2.5: Amplitude ratio ~ frequency ratio plot for system with support 
motion 
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ratio, the mass vibrate with an amplitude equal to that of the support and for 2r > , 

amplitude ratio becomes less than 1, indicating that the mass will vibrate with an amplitude 

less than the support motion. But with increase in damping, in this case, the amplitude of 

vibration of the mass will increase. So in order to reduce the vibration of the mass, one 

should operate the system at a frequency very much greater than 2 times the natural 

frequency of the system. This is the principle of vibration isolation. 

One may consider a number of problems where the system can be reduced to that of a 
single-degree of freedom system. Next we will review about two degree of freedom system 
and continuous systems. 
 
 
TWO DEGREE OF FREEDOM SYSTEMS 
 
Tuned Vibration Absorber: Figure 1.2.6 (a) shows a spring mass system which can be 
thought of the model of a harmonically excited system. To absorb the vibration, generally 
another spring-mass is added to the primary system as shown in Fig. 1.2.6 (b). This system 
is a two degree of freedom system and the equation of motion of this system can be given 
by the following equation. 
 

  
 
Fig. 1.2.6  (a) Single spring-mass system subjected to harmonic forcing, (b) secondary 
spring-mass added to the system shown in (a). 
 

 1 1 1 2 2 1

2 2 2 2 2

0 sin
0 0

m x k k k x F t
m x k k x

ω+ −        
+ =        −         





                                                 (1.2.15) 

 
In the absence of damping the steady state  response  of the primary system  can be given 
by 

( )2 2

sin( )ω φ
ω ω

−
=

−
 

n

F tX
m

                                                                                                (1.2.16) 
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Or,  
( )21

=
−

1kX
F r

                                                                                              (1.2.17)           

where, / nr ω ω=  and   
Hence, when 1r =  or, nω ω= the response of the system tends to infinity. Now one may 
find the steady state response of the system by substituting 1 1 sinx X tω= and 

2 2 sinx X tω= in Eq.(1.2.15) which yield 
2

1 2 1 2 1
2

22 2 2

sin
sin

0
k k m k X F t

t
Xk k m

ω ω
ω

ω

 + − −    
=     

− −     
                                             (1.2.18) 

 
 

Or,  
2

1 2 1 2 1
2

22 2 2
0

k k m k X F
Xk k m

ω

ω

 + − −    
=     

− −     
                                                       (1.2.19) 

If we want to make the primary system stationary i.e., 1 0X = , from Eq. (1.2.19) one can 
write 2

2 2/k mω = . This is the condition for tuned vibration absorber. But in general the 
amplitude of response of the primary and secondary system can be written as   

12
1 1 2 1 2

2
2 2 2 2

0
X k k m k F
X k k m

ω

ω

−
 + − −   

=     
− −      

                                                           (1.2.20) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1.2.7 (a) Response of the primary system (b) response of the primary system in the 
presence of secondary mass and damper system.  
 
Figure 1.2.7 (a) shows the steady state response of the primary system and (b) shows the 
response in the presence of secondary spring-mass system. It is clearly observed that when 

2/ω ω =1, there is no vibration of the primary system. Hence, at this frequency  the 
secondary system absorbs the vibration of the primary system and so the system is known 
as tuned vibration absorber.   
 
For multi degree of freedom system one may revise the following points 
 

• Normal mode of vibration: In this mode of vibration all the masses of the multi-
degree of freedom system vibrating with same frequencies and passes the 

2/ω ω

1 1k X
F

/ nω ω

1 1k X
F

(a) (b) 
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equilibrium position at the same time. For example, in case of a double pendulum 
the two modes of vibration are shown in Fig 1.2.8. 

 
 
 
 
 
 
  
 
Fig. 1.2.8 (a) First mode (b) second mode of vibration of a double pendulum  
If the first and second links make an angle of 1θ  and 2θ with respect to the vertical axis, 
then the frequencies and  first and second normal modes can be found as given below. 

( )1 0.7642 2
g g
l l

ω = =− , ( )2 1.8502 2
g g
l l

ω = =+                                   (1.2.21) 

1

1 1 2
1

2

/ 0.707
,

1 1λ λ

θ θ θ
φ

θ
=

     
= = =     

    
                                                                          (1.2.22) 

 

 
2

1 1 2
2

2

/ 0.707
1 1λ λ

θ θ θ
φ

θ
=

−     
= = =     

    
                                                                       (1.2.23) 

The resulting free vibration of the system is a combination of normal modes having 
different modal participation. 

Hence   

1 2

1 1 1 1

2 2 2 2
1 2

n

n

n n n n

x x x x
x x x x

c c c

x x x x
λ λ λ λ λ λ= = =

       
       
       = + + +       
       
              

                                          (1.2.24) 

Or,  1 1 2 2 3 3 n nx c c c cφ φ φ φ= + + + +                                                                          (1.2.25) 
 
where nc is the participation factor of the nth mode and nφ is the nth normal mode obtained 
by finding the eigenvalues corresponding to the nth eigenvector of the dynamic matrix 

1A M K−= . It may be noted that the eigenvector is equal to the square of the modal 
frequency of the system. 
 

• Orthogonality principle of the normal modes: Normal modes are orthogonal. 
Hence, one may obtain diagonal / uncoupled  mass and stiffness matrices by using 
this principle. 

• Modal matrix: (P)The nth column vector of this matrix is the eigenvector 
corresponding to the nth eigenvalue of the dynamic matrix.  
So, [ ]1 2 nP φ φ φ=                                                                                 (1.2.26) 

• Generalized mass matrix:  It is a diagonal matrix which is given by gM P MP′=  
• Generalized stiffness matrix : It is a diagonal matrix which is given by gK P KP′=  
• Weighted modal matrix ( P ): It is obtained when each column of the modal matrix 

is divided by the square root of the corresponding generalized mass (i.e., nth column 
of P matrix is divided by square root of the nth generalized mass).  It may be noted 
that P MP I′ =   and P KP λ′ =  . 
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• Modal analysis: It is used to uncouple the equation of motion of the coupled multi-

degree of freedom system. For example consider the coupled equation of motion  
sinMx Kx cx F tω+ + =   

Where the mass matrix M, stiffness matrix K and damping matrix C are coupled 
matrices (i.e., they have off-diagonal terms). Now one may use any of the following 
procedure. 
Procedure 1: 

 Find the modal matrix P  
 Assuming Rayleigh damping one my write C M Kα β= +  (1.2.28) 
 Substitute x Py= in Eq. M  + Kx +C  = F sinωt and premultiply P′ in both 

sides of the resulting equation. 
 So one obtains sinP MPy P KPy P MPy P KPy P F tα β ω′ ′ ′ ′ ′+ + + =           (1.2.28) 
 Here, all the matrices are diagonal matrices and one may solve the resulting 

equations as that of single degree of freedom system. 
 
Procedure 2 
Find the weighted modal matrix P  
Assuming Rayleigh damping one my write C M Kα β= +  
Substitute x Py=  in Eq. M  + Kx +C  = F sinωt and pre multiply P′ in both sides 
of the resulting equation. 
So one obtains sinP MPy P KPy P MPy P KPy P F tα β ω′ ′ ′ ′ ′+ + + =       

                       (1.2.29) 
Or, sinIy y Iy y P F tλ α βλ ω′+ + + =                                                                   (1.2.30) 
Unlike the previous procedure here one has to calculate only the P F′ vector and then 
solve the resulting equations as that of single degree of freedom system. 
Normal mode summation method: Most of the time it is not required to consider all 
the modes of the system as only the first few modes play dominant role in the 
resulting vibration.  Hence, instead of taking an n n×  P   or P  matrix, one may 
consider m n× matrix corresponding to the first m modes only. Now one may follow 
the above mentioned procedure where the number of resulting equations will be m  
only. Hence, this reduces the computational time and memory.   

Continuous or Distributed Mass  System: 

Figure 1.2.10 shows few examples of continuous system. The first column shows the 
beams with fixed-fixed, simply supported, fixed-free (cantilevered) and free-free end 
conditions. 
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Fig.: 1.2.10: Example of continuous system (a)  
 
The second column shows a base excited beam with a tip mass and last column shows a 
SCARA robot. In all these cases the system can be modelled as a continuous or distributed 
mass system. Unlike the case of multi-degree of freedom system or discrete mass system 
where the governing equations are written as ordinary differential equation, here, partial 
differential equations are used represent the motion of the system. Few typical cases are 
discussed below. 
 For the following systems the governing equations are represented by wave equations. 

• Lateral vibration of taut string 
• Longitudinal vibration of rod 
• Torsional Vibration of Shaft 

The wave equation is given by 
w wC

t x
∂ ∂

=
∂ ∂

2 2
2

2 2
                                                                                                              (1.2.31) 

Here w is the displacement which is a function of both space variable x  and time t .  
The general solution of the system is  where the mode shape ( )φ x is given 
by the following equation. 

( ) cos sinx a x b xφ β β= +                                                                                           (1.2.32) 

These constants can be obtained by applying the boundary conditions.  
For transverse vibration of the beam with young’s modules E, Moment of inertia I and 
mass per unit length ρ, length L due to pure bending one may use Euler Bernoulli Beam 
which is given by the following equation. 

4 2

4 2 0d y d yEI
dx dt

ρ+ =                                                                                                    (1.2.33) 

The general solution of the system is ( )siny txφ ω= where the mode shape ( )φ x is given 
by the following equation. 

( ) cosh sinh cos sinx a x b x c x d xφ β β β β= + + +                                                     (1.2.34) 
The frequency of the system can be obtained from the following equation. 

 
http://www.s
ciencedirect.
com/science/
article/pii/S0
094114X970
00591 (Date: 
28-08-13) 

http://www.sciencedirect.com/science/article/pii/S0094114X97000591
http://www.sciencedirect.com/science/article/pii/S0094114X97000591
http://www.sciencedirect.com/science/article/pii/S0094114X97000591
http://www.sciencedirect.com/science/article/pii/S0094114X97000591
http://www.sciencedirect.com/science/article/pii/S0094114X97000591
http://www.sciencedirect.com/science/article/pii/S0094114X97000591
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2 2
4

EIl
l

ω β
ρ

=                                                                                                               (1.2.35) 

Table 1.2.1 gives the values of 2 2β l  for different end conditions of the beams for the first 
three mode. 
 
Table : 1.2.1: Values of 2 2β l  for different end conditions of the beams 
Beam 
Configuration First mode Second mode 

 
Third mode 
 

Simply supported 
 

9.87 
 

39.5 
 

88.9 
 

Cantilever 
 

3.52 
 

22.0 
 

61.7 
 

Free-free 
 

22.4 
 

61.7 
 

121.0 
 

Clamped-clamped 
 

22.4 
 

61.7 
 

121.0 
 

Clamped-hinged 
 

15.4 
 

50.0 
 

104.0 
 

Hinged-free 
 

0 
 

15.4 
 

50.0 
 

 
 
 
 
 
 
 
 
 
Mode shapes 
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Fig. 1.2.11: First four mode shapes for a simply supported beam. 
 
Exercise problems 
 
1. Considering the springs and damper to be nonlinear write the equation of motion of a 

single, two and multi-degree of freedom system.  

2.Write the equation of motion of the tuned vibration absorber. Replace the secondary 

spring by a spring with cubic nonlinearity and write the resulting equation of motion. 

3. Consider a pendulum vibration absorber. Considering the link to be flexible, derive the 

equation of motion on the system.  

4. Plots the mode shapes of a (a) cantilever beam (b) cantilever beam with tip mass (c) 

beam with fixed and roller supported end conditions. 

 
 
 
 
 
 

 
Module 1 Lecture 3 

 
In this lecture the qualitative analysis of nonlinear conservative system is introduced and 
commonly observed nonlinear phenomena are briefly described. 
      
Qualitative analysis of nonlinear conservative systems 
 
Consider a nonlinear conservative system which is given by the equation 
  

( ) 0u f u+ =                                                                                                            (1.3.1) 
Multiplying  and the resulting equation 
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Upon integrating one obtains 
 
 ( ( ))uu uf u dt h+ =∫                                                                                                 (1.3.2) 

1 2or, ( ) ,    ( ) ( )
2

u F u h F u f u du+ = = ∫                                                                 (1.3.3) 

This represents that the sum of the kinetic energy and potential energy of the system is 
constant. Hence, for a particular energy level h, the system will be under oscillation, if the 
potential energy ( )F u is less than the total energy h . From the above equation, one may 
plot the phase portrait or the trajectories for different energy level and study qualitatively 
about the response of the system.   
 
Example 1.3.1:  Perform qualitative analysis to study the response of the dynamic system  

30.1 0x x x+ − =                                                                                                        (1.3.4) 
 

Solution: For this system 3 2 41 1( ) ( ) ( 0.1 )
2 40

F x f x dx x x dx x x= = − = −∫ ∫           (1.3.5) 

Figure 1.3.1 shows the variation of potential energy F(x) with x. It has optimum values 
corresponding to 0 or 20x = ±  While x equal to zero represents the system with 
minimum potential energy, the other two points represent the points with maximum 
potential energy 

                              
Fig. 1.3.1 Potential well and phase portrait showing saddle point and center corresponding 
to maximum and minimum potential energy. 
 
 Now by taking different energy level h , one may find the relation between the velocity v  
and displacement x  as 2 42( ( )) 2 2( (0.5 0.025 ))v x h F x h x x= = − = − −                (1.3.6) 
 
Now by plotting the phase portrait one may find the trajectory which clearly depicts that 
the motion corresponding to maximum potential energy is unstable and the bifurcation 
point is of saddle-node type (marked by point S) and the motion corresponding to the 
minimum potential energy is stable center type (marked by point C). 
 
There are several approximate solution method based on the perturbation techniques to 
solve the nonlinear equation of motions of the system. 

S C S 
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Types of Nonlinear response 
 
 Fixed point response 
 Periodic response 
 Quasiperiodic response 
 Chaotic response 

 
Fig. 1.3.2: (a) fixed-point trivial response (b) fixed-point non-trivial response, (c) periodic 
response  

 
Fig. 1.3.3: (a) periodic response with multi-frequency (b) quasi-periodic response (c) 
chaotic response. 
Figures 1.3.2(a, b) show the time response where the steady state response is a fixed point 
response. While in the first case the steady state response leads to a trivial state, in the 
second case it is a non-trivial state. In Fig. (1.3.2 c) a periodic response with single 
frequency is shown. A periodic response with multi-frequency is shown in Fig. (1.3.3(a)). 
Figure 1.3.3(b) shows the time response when the ratio of the considered two frequencies is 
an irrational number. Such responses are known as aperiodic or quasi-periodic response. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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The plot shown in Fig. 1.3.3(c) is a chaotic response which is a deterministic bounded 
response but without following any specific pattern. 
 
A Matlab code is given below to plot the time responses of fixed-point, periodic, quasi-
periodic and chaotic responses. One may change the parameters to obtain a wide range of 
responses. 
 
Matlab code to plot Fig. 1.3.2 and Fig. 1.3.3 
% To plot fixed-point, eriodic, quasi-periodic and chaotic responses 
clc 
clear all 
a0=5; 
  
t=0:0.01:20; 
omega=2; 
beta=0; 
r=sqrt(2); 
u0=5*exp(-0.2*5*t).*sin(4.5*t); 
u1=1.5+10*exp(-0.1*5*t).*sin(4.5*t); 
u2=a0*cos(omega*t+beta); 
  
u3=a0*(cos(omega*t)+cos(omega*r*t)); 
u4=0; 
u5=0; 
ii=1; 
for ip=1:1:7; 
u4=u4+a0*cos(ii*omega*t); 
u5=u5+a0*cos(ip*omega*t); 
ii=2^ip 
end 
  
figure(1) 
subplot(3,1,1) 
plot(t,u0) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
  
subplot(3,1,2) 
plot(t,u1) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
  
subplot(3,1,3) 
plot(t,u2) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
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figure(2) 
  
subplot(3,1,1) 
plot(t,u5) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
  
subplot(3,1,2) 
plot(t,u3) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
  
subplot(3,1,3) 
plot(t,u4) 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('y','fontsize',14,'fontweight','b'); 
grid on 
To characterize these responses one may use 
 
 Time response 
 Phase portrait 
 Poincare’ section 
 Lyapunov exponent 

 
A detailed discussion to numerically obtain time response, phase portrait, Poincare’ section 
and Lyapunov exponent have been carried out in module 5. 
 
Classification of fixed point response 
 
For a dynamical system  =F(x; m) substituting =0 one can obtain the steady state 
solution or equilibrium Point xo by substituting  =0 and solving F(x;m) =0. This solution is 
stable or unstable can be studied by performing the solution by substituting  x = xo + Δx in 
the equation x=F(x,m) which yields the equation Δ  =A Δx. 
 
 Hyperbolic fixed point: when all of the eigenvalues of A have nonzero real parts it 

is known as hyperbolic fixed point. 
 Sink: If all of the eigenvalues of A have negative real part. The sink may be of 

stable focus if it has nonzero imaginary parts and it is of stable node if it contains 
only real eigenvalues which are negative. 

 Source: If one or more eigenvalues of A have positive real part. Here, the system is 
unstable and it may be of unstable focus or unstable node. 
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 Saddle point: when some of the eigenvalues have positive real parts while the rest 
of the eigenvalues have negative. 

 Marginally stable: If some of the eigenvalues have negative real parts while the rest 
of the eigenvalues have zero real parts   

 
 
Typical Frequency response curves 
 

  
 

Fig. 1.3.4: A typical frequency response curves showing the stable and unstable branch 
(solid line stable, dotted line unstable branch) 

 
In nonlinear systems, while plotting the frequency response curves of the system by 
changing the control parameters, one may encounter the change of stability or change in the 
number of equilibrium points. These points corresponding to which the number or nature of 
the equilibrium point changes, are known as bifurcation points. For fixed point response, 
they may be divided into static or dynamic bifurcation points depending on the nature of 
the eigenvalues of the system. If the eigen values are plotted in a complex plane with their 
real and imaginary parts along X and Y directions, a static bifurcation occurs, if with change 
in the control parameter, an eigenvalue of the Jacobian matrix crosses the origin of the  
complex plane. In case of dynamic bifurcation, a pair of complex conjugate eigenvalues 
crosses the imaginary axis with change in control parameter of the system. Hence, in this 
case the resulting solution is stable or unstable periodic type. A detailed discussion on the 
stability and bifurcation of fixed point and periodic responses are given in module 4.  
 

 
 

 

a 

ω  

a 

γ  
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Fig. 1.3.5: Basin of attraction  
 
Commonly used nonlinear equation of motion   
Duffing equation (Free vibration with quadratic and cubic nonlinear term) 

2
2 2 3
0 2 32 0d u u u u

dt
ω εα εα+ + + =                                                                                     (1.3.7) 

 
Duffing equation with damping and weak forcing terms 

2 32 cosn nx x x x f tω εζω εα ε+ + + = Ω                                                                       (1.3.8)  
Duffing equation with damping and strong forcing terms 
 

2 32 cosn nx x x x f tω εζω εα+ + + = Ω                                                                        (1.3.9) 
  
Duffing equation with multi-frequency excitation 

2 3
1 1 2 2 3 32 cos cos cosn nx x x x f t f t f tω εζω εα+ + + = Ω + Ω + Ω + 

                            (1.3.10)
             
Rayleigh’s equation 

2
2 3

02
( ) 0d u u u u

dt
ω ε+ − − =                                                                                               (1.3.11) 

van der Pol’s equation  
2

2 2

02
(1 )d v dvv v

dt dt
ω ε+ = −                                                                                                (1.3.12) 

Hill’s equation 
( ) 0x p t x+ =                                                                                                                (1.3.13) 

Mathieu’s equation 

( )2 2 cos 0nx f t xω ε+ + Ω =                                                                                          (1.3.14) 

Mathieu’s equation with cubic nonlinearies and forcing terms  

( )2 3
1 1 2 22 cos cosnx f t x x f tω ε εα ε+ + Ω + = Ω                                                           (1.3.15) 

  
Method of solutions of these equations will be discussed in module 3. 
Commonly observed phenomena 
 
 Jump up phenomena 
 Jump down phenomena 
 Multi stable region 
 Butterfly effect 
 Primary resonance 
 Secondary resonance 
 Super harmonic and sub harmonic resonance 
 Principal parametric resonance 
 Combination resonance of sum type 
 Combination resonance of difference type 
 Simultaneous resonance conditions 
 Relaxation oscillation 
 Internal resonance condition 
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A detailed discussion on these points will be made in module 6. 
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