Q 7.1 Flywheel weighing 30kg was alowed to swing as d pendulum about a knife-edge at inner side of the rim. If the measured oeriod of oscillatons was 1.22s, determine the moment of inertia of flywheel about its geometric axis.

Flywheel

Given: mass of flywheel $\mathrm{m}=30 \mathrm{~kg}$
Time period $\mathrm{T}=1.22 \mathrm{~s}$
Let the centre of mass be deviated by an angle θ, very small Writing torque equations about pivot point

$$
\begin{aligned}
& j_{y} \ddot{\theta}+m g r \sin \theta=0 \\
& j_{y}=j_{c m}+m r^{2}
\end{aligned}
$$

Icm of flywheel $=m r^{2}$ (hollow disk)
Substituting in the equation above

$$
j_{y}=2 m r^{2}
$$

therefore
$2_{m r^{2}} \ddot{\theta}+m g r \sin \theta=0$
since θ is very less, $\sin \theta \approx \theta$

$$
\begin{gathered}
2 m r^{2} \ddot{\theta}+m g r \theta=0 \\
\ddot{\theta}+\frac{g}{2 r} \theta=0
\end{gathered}
$$

also

$$
\frac{2 \pi}{T}=\sqrt{\frac{g}{2 r}}
$$

$$
r=\frac{g T^{2}}{8 \pi^{2}} \quad \frac{9.81^{*} 1.22^{2}}{8 * 3.1416^{2}}=0.185 m
$$

Moment of inertia about $\mathrm{Icm}=m r^{2}=30 * 0.1852$
Q.7.2 A steel shaft 1.5 m long and 20 mm in diameter is used as a trosion spring for the wheels of a lightautomobile.Determine the natural frequency of the system if the weight of wheel and tyre assembly and its radius of gyration about its axle is 50 mm . Discuss the difference in natural frequency with wheel locked and when unlocked to the arm.

Given : length of shaft $=1.5 \mathrm{~m}$
Diameter $=30 \mathrm{~mm}$
Mass of wheel and tyre assembly=25kg
Radius of gyration about axle $=50 \mathrm{~mm}$

Assume pure
Case I
When wheel tyre assembly is locked at a distance of 0.2 m
$\mathrm{I}=m r^{2}$ moment of inertia about shaft axis

$$
\begin{gathered}
J=25 \times(0.2)^{2}=25 \times 0.04=1 \mathrm{kgm}^{2} \\
K_{t}=\frac{G l_{p}}{l}=\frac{0.8 \times 10^{11} \times \frac{\pi}{32}(0.02)^{4}}{1.5} \\
\text { Polar moment }=\left[\frac{\pi}{32} d^{4}\right]=\frac{\pi}{32} \times(0.02)^{4}
\end{gathered}
$$

$K \mathrm{t}=837.76 \mathrm{Nm} / \mathrm{rad}$

$$
\omega=\sqrt{\frac{K_{t}}{J}}=\sqrt{\frac{837.76}{1}}=28.9 \mathrm{c} / \mathrm{s}
$$

Case II
displacement during motion $|\bar{Y}|=\gamma \theta$
$|\bar{\gamma}|=y_{o m}$ of the wheel
$y_{o m}=\ell \phi=\gamma \theta$
Now the total every is constant
KE of wheel about its axis $=\frac{1}{2} I_{c m} \dot{\theta}^{2}$

KE of wheel about the shaft $=\frac{1}{2} I_{w s} \dot{\theta}^{2}$
PE in wheel $=\frac{1}{2} K_{t} \phi^{2}$

$$
\begin{gathered}
T E=\frac{1}{2} I_{q m} \dot{\theta}^{2}+\frac{1}{2} I_{w} \dot{\theta}^{2}+\frac{1}{2} K_{t} \dot{\phi}^{2} \\
\theta=\frac{\ell}{\gamma} \phi \\
\Rightarrow \frac{1}{2} I_{m}\left(\frac{\ell}{\gamma}\right)^{2} \dot{\theta}^{2}+\frac{1}{2} I_{w s} \dot{\theta}^{2}+\frac{1}{2} K_{t} \dot{\phi}^{2}
\end{gathered}
$$

differentiate w.r.t. time

$$
\begin{gathered}
{\left[I_{m}\left(\frac{\ell}{\gamma}\right)^{2}+I_{w s}\right] \ddot{\psi}+K_{t} \phi} \\
\omega_{n}=0 \\
\sqrt{\frac{K_{t}}{I_{m}\left(\frac{\ell}{\gamma}\right)^{2}+I_{w s}}}
\end{gathered}
$$

