CRYOGENIC ENGINEERING

Self Assessment

- 1. McCabe Thiele method calculates _____ & ____ of each component at every plate.
- For a jth plate, the liquid an vapor leaving from top are denoted by _____ and ____ respectively.
- 3. The vapor and liquid on any plate are assumed to be in _____ equilibrium.
- 4. In McCabe Thiele method, liquid and vapor enthalpies are assumed to be _____.
- 5. The slope of operating line for stripping section is given by _____.
- The y intercept of operating line for enriching section is given by _____.
- 7. Mixture that is to be separated is called as _____

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Self Assessment

- 8. q=0 when the feed is totally _____.
- 9. _____ and _____ are the slope and the y intercept of q line respectively.
- 10. Fill the following table.

Condition	q	Slp
Sat. Vap. (h _F =H)	q=0	
Sat. Liq. (h _F =h)		∞
2 ph. (H <h<sub>F<h)< td=""><td>0<q<1< td=""><td>-ve</td></q<1<></td></h)<></h<sub>	0 <q<1< td=""><td>-ve</td></q<1<>	-ve
Sub. Liq. (h _F <h)< td=""><td></td><td>+ve</td></h)<>		+ve
	q<0	+ve

48

CRYOGENIC ENGINEERING

Answers

- 1. Vapor fraction, liquid fraction
- 2. L_j and V_j
- 3. Thermal
- 4. Constant
- 5. L_{n+1}/V_n
- 6. $(-(B/V_m)x_B)$
- 7. Feed
- 8. Vapor
- 9. q/(q-1) and $x_F/(1-q)$

Condition	q	Slp
Sat. Vap. (h _F =H)	q=0	0
Sat. Liq. (h _F =h)	q=1	∞
2 ph. (H <h<sub>F<h)< td=""><td>0<q<1< td=""><td>-ve</td></q<1<></td></h)<></h<sub>	0 <q<1< td=""><td>-ve</td></q<1<>	-ve
Sub. Liq. (h _F <h)< td=""><td>q>1</td><td>+ve</td></h)<>	q>1	+ve
Sup. Vap. (h _F >h)	q<0	+ve