Self Assessment

- 1. Coefficient of thermal expansion is the change in length to original length per ______.
- 2. Coefficient of thermal expansion _____ with the decrease in temperature.
- 3. Metals undergo most of the contraction upto ____.
- 4. Mathematically, mean linear thermal expansion is defined as _____.
- 5. Dulong and Petit value for Specific heat is _____.

Self Assessment

- 6. Debye characteristic temperature is denoted by _____.
- 7. At low temperatures (T < $\theta_D/12$), the Debye function approaches a constant value of _____.
- 8. Expression for Q in Thermal conductivity integral form is ______.
- 9. k_T decreases with the _____ in the temperature for impure metals.

Self Assessment

- 10. Specific heat of the material _____ with decrease in temperature.
- 11. Electrical conductivity of the metallic conductors at low temperature.
- 12. k_e and k_t are correlated by _____ Law.

Answers

- 1. Unit rise in temperature.
- 2. Decreases
- 3.80 K

4.
$$\frac{\Delta L}{L_0} = \frac{L_T - L_0}{L_0}$$

- 5. 3R
- 6. θ_D
- 7. $4\pi^4/5$
- $8. Q = -G(\theta_2 \theta_1)$

Answers

9. Decrease

10. Decrease

11. Increase

12. Wiedemann-Franz