ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date

Mechanical Engineering Department Indian Institute of Technology, Bombay

Mumbai - 400076
India
LECTURE-8 SIMILARITY SOLN TO TEMP BL - I

LECTURE-8 SIM SOLN TO TEMP BL - I

(1) Condition for Existence of Similarity Solutions
(2) Similarity Equation and Boundary Conditions

BL Energy Equation L8($\left.\frac{1}{11}\right)$

$$
\begin{equation*}
\rho C_{p}\left[u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right]=k \frac{\partial^{2} T}{\partial y^{2}}+\mu\left(\frac{\partial u}{\partial y}\right)^{2}+u \frac{d p_{\infty}}{d x}+\dot{Q}_{\text {chem }}+\dot{Q}_{\mathrm{rad}} \tag{1}
\end{equation*}
$$

Source Terms and Boundary Conditions:
(1) $\dot{Q}_{\text {chem }}$ and $\dot{Q}_{\text {rad }}$ are presently neglected
(2) $u d p_{\infty} / d x$ is important only in high-speed gas flows presently neglected
(3) at $\mathrm{y}=0, \mathrm{~T}=T_{w}(\mathrm{x})$ (Wall Temperature)
(9) as $\mathrm{y} \rightarrow \infty, \mathrm{T}=T_{\infty}$ (Constant Free Stream Temperature)

Development of Similarity Eqn - L8($\frac{2}{11}$)

Define

$$
\begin{align*}
T_{w}(x)-T_{\infty} & =G(x) \tag{2}\\
\theta(\eta) & =\frac{T(x, y)-T_{\infty}}{T_{w}(x)-T_{\infty}} \quad \eta=y \sqrt{\frac{U_{\infty}}{\nu x}} \tag{3}
\end{align*}
$$

Then, the energy eqn will read as

$$
\begin{equation*}
\left[u \frac{\partial \theta}{\partial x}+v \frac{\partial \theta}{\partial y}\right]+\frac{u \theta}{G} \frac{d G}{d x}=\alpha \frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\nu}{C p\left(T_{w}-T_{\infty}\right)}\left(\frac{\partial u}{\partial y}\right)^{2} \tag{4}
\end{equation*}
$$

Each term is now represented in similarity variables

Similarity Variables - L8($\left.\frac{3}{11}\right)$

Recall the following definitions

$$
\begin{aligned}
U_{\infty} & =C x^{m} \\
\eta & =y \sqrt{\frac{U_{\infty}}{\nu x}} \quad \psi=f(\eta) n(x) \quad n(x)=\sqrt{\nu U_{\infty} x} \\
u & =U_{\infty} f^{\prime} \quad v=-\frac{\partial \psi}{\partial x}=-\left[f^{\prime} n(x) \frac{\partial \eta}{\partial x}+f \frac{d n}{d x}\right] \\
\frac{\partial \theta}{\partial x} & =\theta^{\prime} \frac{\partial \eta}{\partial x} \quad \frac{\partial \theta}{\partial y}=\theta^{\prime} \frac{\partial \eta}{\partial y}=\theta^{\prime} \sqrt{\frac{U_{\infty}}{\nu x}} \\
\frac{\partial^{2} \theta}{\partial y^{2}} & =\theta^{\prime \prime} \frac{U_{\infty}}{\nu x} \quad\left(\frac{\partial u}{\partial y}\right)^{2}=\frac{U_{\infty}^{3}}{\nu x}\left(f^{\prime \prime}\right)^{2}
\end{aligned}
$$

Substitution gives (see next slide)

Similarity Equation - I-L8($\left.\frac{4}{11}\right)$

$$
\begin{aligned}
f^{\prime} \theta^{\prime} \frac{\partial \eta}{\partial x} & -\frac{\theta^{\prime}}{n}\left[f^{\prime} n \frac{\partial \eta}{\partial x}+f \frac{d n}{d x}\right]+\frac{f^{\prime} \theta}{G} \frac{d G}{d x} \\
& =\frac{\theta^{\prime \prime}}{\operatorname{Pr} x}+\frac{U_{\infty}^{2}}{\operatorname{Cp}\left(T_{w}-T_{\infty}\right)} \frac{\left(f^{\prime \prime}\right)^{2}}{x}
\end{aligned}
$$

or, upon simplification and multiplication by x

$$
f^{\prime} \theta\left(\frac{x}{G} \frac{d G}{d x}\right)-f \theta^{\prime}\left(\frac{x}{n} \frac{d n}{d x}\right)=\frac{\theta^{\prime \prime}}{P r}+2 E c_{x}\left(f^{\prime \prime}\right)^{2}
$$

where Eckert Number $E c_{x}=\left(U_{\infty}^{2} / 2\right) /\left(\operatorname{Cp}\left(T_{w}-T_{\infty}\right)\right)$.
It can be shown that $(x / n)(d n / d x)=(m+1) / 2$.

Similarity Equation - II - L8($\left.\frac{5}{11}\right)$

Hence the similarity equation will read as

$$
\begin{equation*}
\theta^{\prime \prime}+\operatorname{Pr}\left[\left(\frac{m+1}{2}\right) f \theta^{\prime}-f^{\prime} \theta\left(\frac{x}{G} \frac{d G}{d x}\right)+2 E c_{x}\left(f^{\prime \prime}\right)^{2}\right]=0 \tag{5}
\end{equation*}
$$

Similarity solutions are possible only when
(1) ($\mathrm{x} / \mathrm{G})(\mathrm{dG} / \mathrm{dx})=$ constant (γ, say) or
$\mathrm{G}(\mathrm{x})=T_{w}(x)-T_{\infty}=\Delta T_{\text {ref }} X^{\gamma}$
(2) $E C_{x}=\left(U_{\infty}^{2}(x) / 2\right) /\left(C p\left(T_{w}(x)-T_{\infty}\right)\right)=$ constant or

$$
E C_{x}=\left(\frac{C^{2}}{2 C p \Delta T_{\text {ref }}}\right)\left(\frac{x^{2 m}}{x^{\gamma}}\right)=\text { constant }
$$

(3) Hence, $\gamma=2 m$ when $E c_{x} \neq 0$ (or, when viscous dissipation is accounted)

Final Similarity Equation - L8($\left.\frac{6}{11}\right)$

Hence the final similarity equation will read as

$$
\begin{equation*}
\theta^{\prime \prime}+\operatorname{Pr}\left[\left(\frac{m+1}{2}\right) f \theta^{\prime}-\gamma f^{\prime} \theta+2 E c\left(f^{\prime \prime}\right)^{2}\right]=0 \tag{6}
\end{equation*}
$$

where $\mathrm{Ec}=\left(U_{\infty}^{2}(x) / 2\right) /\left(C p \Delta T_{\text {ref }} X^{\gamma}\right)$. If $\mathrm{Ec} \neq 0, \gamma=2 m$
The Boundary Conditions are:

$$
\theta(0)=1 \quad \text { and } \quad \theta(\infty)=0
$$

Solution: $\theta(\eta)=F\left(m, B_{f}, \operatorname{Pr}, \gamma, E c\right)$ If $E c \neq 0, \gamma=2 m$

Shooting Method - L8($\frac{7}{11}$)

The 2nd order equation is split into two 1st order ODEs

$$
\begin{align*}
& \frac{d \theta}{d \eta}= \theta^{\prime} \text { with } \quad \theta(0)=1 \text { (known) } \tag{7}\\
& \frac{d \theta^{\prime}}{d \eta}= \theta^{\prime \prime}=-\operatorname{Pr}\left[\left(\frac{m+1}{2}\right) f \theta^{\prime}-\gamma f^{\prime} \theta+2 E c\left(f^{\prime \prime}\right)^{2}\right] \\
& \text { with } \theta^{\prime}(0) \text { (unknown) } \tag{8}
\end{align*}
$$

(1) Solution of Velocity Boundary Layer gives $f, f^{\prime}, f^{\prime \prime}$
(2) Then, $\theta^{\prime}(0)$ is guessed and the two equations are solved by R-K method from $\eta=0$ to $\eta=\eta_{\text {max }}$.
(3) At each iteration, $\mathrm{BC} \theta\left(\eta_{\max }\right) \rightarrow 0$ is checked.
(9) If NOT satisfied, $\theta^{\prime}(0)$ is revised

Output Parameters - I-L8($\left.\frac{8}{11}\right)$

(1) The Physical Thickness Δ is notionally associated with value of y where $\theta\left(\eta_{\max }\right) \simeq 0.01$.
(2) Enthalpy Thickness Δ_{2} is defined as

$$
\begin{equation*}
\Delta_{2}=\int_{0}^{\infty} \frac{\rho \operatorname{Cpu}\left(T-T_{\infty}\right)}{\rho_{\infty} C p_{\infty} U_{\infty}\left(T_{w}-T_{\infty}\right)} d y \tag{9}
\end{equation*}
$$

(3) Dimensionless Form (Uniform Property)

$$
\begin{equation*}
\Delta_{2}^{*}=\frac{\Delta_{2}}{x} R e_{x}^{0.5}=\int_{0}^{\eta_{\max }} f^{\prime} \theta d \eta \tag{10}
\end{equation*}
$$

Output Parameters - II - L8(9) $\left.\frac{9}{11}\right)$

Local H T Coef, Nusselt and Stanton Numbers

$$
\begin{align*}
h_{x} & =\frac{q_{w}}{T_{w}-T_{\infty}}=-\frac{k(\partial T / \partial y)_{y=0}}{T_{w}-T_{\infty}}=-k \sqrt{\frac{U_{\infty}}{\nu x}} \theta^{\prime} \tag{0}\\
N u_{x} & =\frac{h_{x} x}{k}=-R e_{x}^{0.5} \theta^{\prime}(0) \tag{12}\\
S t_{x} & =\frac{h_{x}}{\rho C p U_{\infty}}=\frac{N u_{x}}{R e_{x} P r}
\end{align*}
$$

$$
N u_{x}, S t_{x}=F\left(m, B_{f}, \operatorname{Pr}, \gamma, E c\right) \text { If } E c \neq 0, \gamma=2 m
$$

$$
\begin{equation*}
\overline{N u}=\frac{\bar{h} x}{k}=\left(\frac{2}{m+1}\right) N u_{L} \quad \bar{h}=\frac{1}{L} \int_{0}^{L} h_{x} d x \tag{14}
\end{equation*}
$$

Typical Profiles - L8($\left.\frac{10}{11}\right)$

Flat Plate, No Suction/Blowing, Const Wall Temp, No Viscous Dissipation ($\operatorname{Pr}=1$)

Figure: $f^{\prime \prime \prime}+0.5 f f^{\prime \prime}=0$ and $\theta^{\prime \prime}+0.5 f \theta^{\prime}=0$.
$f(0)=f^{\prime}(0)=0, \theta(0)=1$ and $\quad f^{\prime}(\infty)=1, \theta(\infty)=0$.
Hence, $\theta(\eta)=1-f^{\prime}(\eta)$ - Perfect Analogy Between Heat and
Momentum Transfer $\Delta^{*}=\delta^{*}, \Delta_{2}^{*}=\delta_{2}^{*}$ and $-\theta^{\prime}(0)=f^{\prime \prime}(0)$

Moderate Pr Numbers - L8($\left.\frac{11}{11}\right)$

$\left(m=B_{f}=\gamma=E c=0\right)$
Pr
$-\theta^{\prime}(0)$
0.7
Δ^{*}
-291
5.60
0.330
4.92
0.572
Δ_{2}^{*}

$-\theta^{\prime}(0)=N u_{x} / R e_{x}^{0.5}$ can be correlated as

$$
N u_{x}=0.332 R e_{x}^{0.5} P r^{0.33}
$$

Very good agreement with Experimental data.
Δ^{*} decreases with increase in $\operatorname{Pr} . \Delta^{*}=\delta^{*}$ for $\operatorname{Pr}=1$.
In the next lecture, effects of other parameters are considered

