ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-7 SIMILARITY SOLUTION TO VELOCITY BL

LECTURE-7 SIM SOLN TO VEL BL

- Similarity Equation and Boundary Conditions
- Shooting Method
- Solutions to Velocity Boundary Layer Equation

Similarity Eqn and BCs -L7($\frac{1}{14}$)

Our interest is to solve

$$f''' + \left(\frac{m+1}{2}\right) f f'' + m \left(1 - f^{2}\right) = 0$$
(1)
$$f(0) = -B_{f}\left(\frac{2}{m+1}\right) \quad f'(0) = 0 \quad \text{and} \quad f'(\infty) = 1 \quad (2)$$

The solution gives the velocity profiles

$$f'(\eta) = \frac{u}{U_{\infty}} = F(m, B_f)$$
(3)
$$\frac{v}{U_{\infty}} Re_x^{0.5} = -(\frac{m+1}{2}) \left\{ f + (\frac{m-1}{m+1}) \eta f' \right\}$$
(4)

- N

Parameters of Interest - $L7(\frac{2}{14})$

The $f'(\eta)$ solution gives the Coefficient of Friction $C_{f,x}$ as a function of Reynolds number $Re_x = U_{\infty} x/\nu$

$$\tau_{w,x} = \mu \left\{ \frac{\partial u}{\partial y} \right\}_{y=0} = \mu U_{\infty} \sqrt{\frac{U_{\infty}}{\nu x}} f''(0)$$
(5)

$$C_{f,x} = \frac{\tau_{w,x}}{\rho U_{\infty}^2/2} = 2 f''(0) Re_x^{-0.5}$$
(6)

$$\overline{C_f} = \frac{1}{L} \int_0^L \tau_{w,x} dx = (\frac{2}{3m+1}) C_{f,x}$$
(7)

Therefore, we must determine f''(0). Further parameters of interest will be listed in a later slide.

Shooting Method - L7($\frac{3}{14}$)

The 3rd order equation is split into three 1st order ODEs

$$\frac{d f}{d \eta} = f' \text{ with } f(0) = B_f(\frac{2}{m+1}) \text{ (known)}$$

$$\frac{d f'}{d \eta} = f'' \text{ with } f'(0) = 0 \text{ (known)}$$

$$\frac{d f''}{d \eta} = f''' = -\left[\left(\frac{m+1}{2}\right)ff'' + m(1-f'^2)\right]$$

$$\text{ with } f''(0) \text{ (unknown)}$$
(10)

Each equation is solved by Runge-Kutta Method from $\eta = 0$ to $\eta = \eta_{max}$ (in liu of $\eta = \infty$). Typically, $3 < \eta_{max} < 10$ suffices depending on the value of B_f and m.

Iterative Algorithm - $L6(\frac{4}{14})$

- Select values of m and B_f
- 2 Select η_{max} and step change $d\eta$
- Guess f'' (0)
- Solve three equations simulteneously by R-K method
- So Check if value of $f'(\eta_{max}) = 1$ or NOT
- If NOT, revise $f''(0) = \Phi$ as

$$\Phi(k+1) = \Phi(k) + (1 - \psi(k)) \left[\frac{\Phi(k) - \Phi(k-1)}{\psi(k) - \psi(k-1)} \right]$$

where k is iteration number and $\psi = f'(\eta_{max})$.

- Go to step 4
- At Convergence,
 - Print values of $f(\eta), f'(\eta), f''(\eta)$.
 - 2 Note value of f''(0)

Typical Convergence History - L7($\frac{5}{14}$)

Solution is obtained for m = 0, $B_f = 0$, $\eta_{max} = 7$ and $d\eta = \eta_{max}/300$. Initial Guess, f''(0) = 0.02.

k	<i>f</i> ″ (0)	$f(\eta_{max})$	$f'(\eta_{max})$	$f''(\eta_{max})$
1	0.02	0.465E+00	0.123E+00	0.115E-01
2	0.07	0.147E+01	0.342E+00	0.111E-01
3	0.220	0.382E+01	0.761E+00	0.125E-02
4	0.306	0.496E+01	0.948E+00	0.321E-03
5	0.329	0.525E+01	0.997E+00	0.221E-03
6	0.33071	0.527E+01	0.100E+01	0.216E-03

Because of very poor guess, 6 iterations are required. In this case, $C_{f,x} = 0.6614 Re_x^{-0.5}$ and $\overline{C_f} = 1.28 Re_L^{-0.5}$. Series Solution: $C_{f,x} = 0.664 Re_x^{-0.5}$ and $\overline{C_f} = 1.328 Re_L^{-0.5}$.

Typical Profiles - $L7(\frac{6}{14})$

Figure: Profiles of f, f' and f'' - (m = 0 $B_f = 0$)

Characteristic Thicknesses - $L7(\frac{7}{14})$

- The *Physical Thickness* δ is notionally associated with value of y where $u/U_{\infty} = f'(\eta) \simeq 0.99$.
- 2 Diplacement Thickness δ_1 is defined as

$$\delta_1 = \int_0^\infty \left(1 - \frac{\rho u}{\rho_\infty U_\infty}\right) dy \qquad (11)$$

It represents the Mass Deficit caused by the viscosity affected low velocity (that is $u < U_{\infty}$) region near a wall.

Observe and Serve and Se

$$\delta_2 = \int_0^\infty \frac{u}{U_\infty} \left(1 - \frac{\rho u}{\rho_\infty U_\infty}\right) dy \qquad (12)$$

It represents Momentum Deficit caused by the boundary layer

Dimensionless Forms - $L7(\frac{8}{14})$

In incompressible flows $\rho/\rho_{\infty} =$ 1. Hence,

$$\delta^* = \frac{\delta}{x} R e_x^{0.5} \tag{13}$$

$$\delta_1^* = \frac{\delta_1}{x} Re_x^{0.5} = \int_0^\infty (1 - f'(\eta)) d\eta$$
 (14)

$$\delta_{2}^{*} = \frac{\delta_{2}}{x} Re_{x}^{0.5} = \int_{0}^{\infty} f'(\eta) (1 - f'(\eta)) d\eta \qquad (15)$$

$$C_{f,x} = \frac{\tau_{w,x}}{\rho U_{\infty}^2/2} = 2 f''(0) R e_x^{-0.5}$$
(16)

These are evalutaed from Similarity solutions at convergence.

Effect of Pressure Gradient m - L7($\frac{9}{14}$)

Solutions with $B_f = 0$

m	β	f'' (0)	δ^*	δ_1^*	δ^*_2	Remarks
4.000	1.600	2.396	1.330	0.340	0.157	
1.000	1.000	1.229	2.380	0.643	0.290	Stagnation
0.330	0.500	0.755	3.400	0.981	0.427	
0.000	0.000	0.330	4.900	1.727	0.663	Flat Plate
-0.040	-0.083	0.239	5.400	2.012	0.729	
-0.065	-0.139	0.163	5.800	2.330	0.786	
-0.085	-0.186	0.066	6.500	2.906	0.847	
-0.091	-0.200	0.000	7.420	3.498	0.868	Seperation

Excellent agreement with measurements of Nikuradze (1942) and Liepman and Dhawan (1951) for Flat Plate BL (m = 0)

Comments on Results - $L7(\frac{10}{14})$

- For m = 0 (Flat Plate) $\delta^* \simeq 5$ and $f''(0) \simeq 0.33$
- **2** For m > 0 (Acc Flow) $\delta^* < 5$ and f''(0) > 0.33
- For m < 0 (Dec Flow) $\delta^* > 5$ and f''(0) < 0.33
- For $m \le -0.091$ (Dec Flow), $\delta^* > 5$ and $f''(0) \le 0$. Hence,Separation occurs

Figure: Velocity Profiles - Effect of m ($B_f = 0$)

Adv Pr Gr causes Flow thickening whereas Fav Pr Gr causes Flow thinning .

Effect of Suction/Blowing - L7(¹¹/₁₄)

- Recall that $B_f = (V_w(x)/U_\infty(x)) Re_x^{0.5}$ = constant for similarity solutions to exist.
- 2 Therefore, since $U_{\infty} = C x^m$,

$$V_{\rm w} \propto (\frac{U_{\infty}}{x})^{0.5} \propto x^{(m-1)/2} \tag{17}$$

Solutions obtained for m = 0 and m = 1 are shown on the next slide

Effect of B_f (m = 0) - L7($\frac{12}{14}$) Flat Plate Flow

B _f	f'' (0)	δ^*	δ_1^*	δ^*_2
-2.0	2.063	1.87	0.439	0.212
-1.0	1.155	2.80	0.728	0.336
-0.5	0.723	3.60	1.04	0.456
0.0	0.330	4.90	1.727	0.663
0.3	0.134	6.33	2.69	0.868
0.5	0.0351	8.40	4.406	1.07
0.612	0.0	-	-	-

- $B_f < 0$ represents Suction
- **2** $B_f > 0$ represents Blowing
- **I** $B_f = 0.612$ represents Separation due to blowing

E N 4 E N

Stagnation Point Flow

B _f	f'' (0)	δ^*	δ_1^*	δ_2^*
-2.0	2.611	1.4	0.337	0.161
-1.0	1.865	1.80	0.454	0.213
-0.5	1.53	2.07	0.538	0.247
0.0	1.229	2.38	0.643	0.290
0.3	1.069	2.59	0.719	0.320
0.5	0.972	2.73	0.776	0.342
1.0	0.763	3.16	0.939	0.403

Even for $B_f = 1.0$, Separation does not occur

Velocity Profiles - L6(¹⁴/₁₄)

Flat Plate

Stagnation Point

< 6 b

Notice zero velocity gradient for $B_f = 0.612$

12 N A 12