ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-7 SIMILARITY SOLUTION TO VELOCITY BL

LECTURE-7 SIM SOLN TO VEL BL

(1) Similarity Equation and Boundary Conditions
(2) Shooting Method
(3) Solutions to Velocity Boundary Layer Equation

Similarity Eqn and BCs -L7($\left.\frac{1}{14}\right)$

Our interest is to solve

$$
\begin{align*}
f^{\prime \prime \prime} & +\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)=0 \tag{1}\\
f(0) & =-B_{f}\left(\frac{2}{m+1}\right) \quad f^{\prime}(0)=0 \quad \text { and } \quad f^{\prime}(\infty)=1 \tag{2}
\end{align*}
$$

The solution gives the velocity profiles

$$
\begin{align*}
f^{\prime}(\eta) & =\frac{u}{U_{\infty}}=F\left(m, B_{f}\right) \tag{3}\\
\frac{v}{U_{\infty}} R e_{x}^{0.5} & =-\left(\frac{m+1}{2}\right)\left\{f+\left(\frac{m-1}{m+1}\right) \eta f^{\prime}\right\} \tag{4}
\end{align*}
$$

Parameters of Interest - L7($\frac{2}{14}$)

The $f^{\prime}(\eta)$ solution gives the Coefficient of Friction $C_{f, x}$ as a function of Reynolds number $R e_{x}=U_{\infty} x / \nu$

$$
\begin{align*}
\tau_{w, x} & =\mu\left\{\frac{\partial u}{\partial y}\right\}_{y=0}=\mu U_{\infty} \sqrt{\frac{U_{\infty}}{\nu x}} f^{\prime \prime}(0) \tag{5}\\
C_{f, x} & =\frac{\tau_{w, x}}{\rho U_{\infty}^{2} / 2}=2 f^{\prime \prime}(0) R e_{x}^{-0.5} \tag{6}\\
\overline{C_{f}} & =\frac{1}{L} \int_{0}^{L} \tau_{w, x} d x=\left(\frac{2}{3 m+1}\right) C_{f, x} \tag{7}
\end{align*}
$$

Therefore, we must determine $f^{\prime \prime}(0)$. Further parameters of interest will be listed in a later slide.

Shooting Method - L7 $\left(\frac{3}{14}\right)$

The 3rd order equation is split into three 1st order ODEs

$$
\begin{gather*}
\frac{d f}{d \eta}=f^{\prime} \text { with } \quad f(0)=B_{f}\left(\frac{2}{m+1}\right) \text { (known) } \tag{8}\\
\frac{d f^{\prime}}{d \eta}=f^{\prime \prime} \text { with } f^{\prime}(0)=0 \text { (known) } \tag{9}\\
\frac{d f^{\prime \prime}}{d \eta}=f^{\prime \prime \prime}=-\left[\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)\right] \\
\text { with } \quad f^{\prime \prime}(0) \text { (unknown) } \tag{10}
\end{gather*}
$$

Each equation is solved by Runge-Kutta Method from $\eta=0$ to $\eta=\eta_{\text {max }}$ (in liu of $\eta=\infty$).
Typically, $3<\eta_{\max }<10$ suffices depending on the value of B_{f} and m.

Iterative Algorithm - L6($\left.\frac{4}{14}\right)$

(1) Select values of m and B_{f}
(2) Select $\eta_{\max }$ and step change $d \eta$
(3) Guess $f^{\prime \prime}(0)$
(a) Solve three equations simulteneously by R-K method
(5) Check if value of $f^{\prime}\left(\eta_{\text {max }}\right)=1$ or NOT
(c) If NOT, revise $f^{\prime \prime}(0)=\Phi$ as

$$
\Phi(k+1)=\Phi(k)+(1-\psi(k))\left[\frac{\Phi(k)-\Phi(k-1)}{\psi(k)-\psi(k-1)}\right]
$$

where k is iteration number and $\psi=f^{\prime}\left(\eta_{\max }\right)$.
C Go to step 4
(3) At Convergence,
(0) Print values of $f(\eta), f^{\prime}(\eta), f^{\prime \prime}(\eta)$.
(2) Note value of $f^{\prime \prime}(0)$

Typical Convergence History - L7($\frac{5}{14}$)

Solution is obtained for $\mathrm{m}=0, B_{f}=0, \eta_{\max }=7$ and $d \eta=\eta_{\max } / 300$. Intial Guess, $f^{\prime \prime}(0)=0.02$.

k	$f^{\prime \prime}(0)$	$f\left(\eta_{\max }\right)$	$f^{\prime}\left(\eta_{\max }\right)$	$f^{\prime \prime}\left(\eta_{\max }\right)$
1	0.02	$0.465 \mathrm{E}+00$	$0.123 \mathrm{E}+00$	$0.115 \mathrm{E}-01$
2	0.07	$0.147 \mathrm{E}+01$	$0.342 \mathrm{E}+00$	$0.111 \mathrm{E}-01$
3	0.220	$0.382 \mathrm{E}+01$	$0.761 \mathrm{E}+00$	$0.125 \mathrm{E}-02$
4	0.306	$0.496 \mathrm{E}+01$	$0.948 \mathrm{E}+00$	$0.321 \mathrm{E}-03$
5	0.329	$0.525 \mathrm{E}+01$	$0.997 \mathrm{E}+00$	$0.221 \mathrm{E}-03$
6	0.33071	$0.527 \mathrm{E}+01$	$0.100 \mathrm{E}+01$	$0.216 \mathrm{E}-03$

Because of very poor guess, 6 iterations are required. In this case, $C_{f, x}=0.6614 R e_{x}^{-0.5}$ and $\overline{C_{f}}=1.28 R e_{L}^{-0.5}$. Series Solution: $C_{f, x}=0.664 R e_{x}^{-0.5}$ and $\overline{C_{f}}=1.328 R e_{L}^{-0.5}$.

Typical Profiles - L7($\frac{6}{14}$)

Figure: Profiles of f, f^{\prime} and $f^{\prime \prime}-\left(\mathrm{m}=0 B_{f}=0\right)$

Characteristic Thicknesses - L7($\frac{7}{14}$)

(1) The Physical Thickness δ is notionally asscociated with value of y where $u / U_{\infty}=f^{\prime}(\eta) \simeq 0.99$.
(2) Diplacement Thickness δ_{1} is defined as

$$
\begin{equation*}
\delta_{1}=\int_{0}^{\infty}\left(1-\frac{\rho u}{\rho_{\infty} U_{\infty}}\right) d y \tag{11}
\end{equation*}
$$

It represents the Mass Deficit caused by the viscosity affected low velocity (that is $u<U_{\infty}$) region near a wall.
(3) Momentum Thickness δ_{2} is defined as

$$
\begin{equation*}
\delta_{2}=\int_{0}^{\infty} \frac{u}{U_{\infty}}\left(1-\frac{\rho u}{\rho_{\infty} U_{\infty}}\right) d y \tag{12}
\end{equation*}
$$

It represents Momentum Deficit caused by the boundary layer

Dimensionless Forms - L7($\frac{8}{14}$)

In incompressible flows $\rho / \rho_{\infty}=1$. Hence,

$$
\begin{align*}
\delta^{*} & =\frac{\delta}{x} R e_{x}^{0.5} \tag{13}\\
\delta_{1}^{*} & =\frac{\delta_{1}}{x} R e_{x}^{0.5}=\int_{0}^{\infty}\left(1-f^{\prime}(\eta)\right) d \eta \tag{14}\\
\delta_{2}^{*} & =\frac{\delta_{2}}{x} R e_{x}^{0.5}=\int_{0}^{\infty} f^{\prime}(\eta)\left(1-f^{\prime}(\eta)\right) d \eta \tag{15}\\
C_{f, x} & =\frac{\tau_{w, x}}{\rho U_{\infty}^{2} / 2}=2 f^{\prime \prime}(0) R e_{x}^{-0.5} \tag{16}
\end{align*}
$$

These are evalutaed from Similarity solutions at convergence.

Effect of Pressure Gradient m-L7($\frac{9}{14}$)

Solutions with $B_{f}=0$

m	β	$f^{\prime \prime}(0)$	δ^{*}	δ_{1}^{*}	δ_{2}^{*}	Remarks
4.000	1.600	2.396	1.330	0.340	0.157	
1.000	1.000	1.229	2.380	0.643	0.290	Stagnation
0.330	0.500	0.755	3.400	0.981	0.427	
0.000	0.000	0.330	4.900	1.727	0.663	Flat Plate
-0.040	-0.083	0.239	5.400	2.012	0.729	
-0.065	-0.139	0.163	5.800	2.330	0.786	
-0.085	-0.186	0.066	6.500	2.906	0.847	
-0.091	-0.200	0.000	7.420	3.498	0.868	Seperation

Excellent agreement with measurements of Nikuradze (1942) and Liepman and Dhawan (1951) for Flat Plate BL ($\mathrm{m}=0$)

Comments on Results - L7($\left.\frac{10}{14}\right)$

(1) For $m=0$ (Flat Plate) $\delta^{*} \simeq 5$ and $f^{\prime \prime}(0) \simeq 0.33$
(2) For $m>0$ (Acc Flow) $\delta^{*}<5$ and $f^{\prime \prime}(0)>0.33$
(3) For $m<0$ (Dec Flow) $\delta^{*}>5$ and $f^{\prime \prime}(0)<0.33$
(9) For $m \leq-0.091$ (Dec Flow (), $\delta^{*}>5$ and $f^{\prime \prime}(0) \leq 0$.
Hence,Separation occurs
Figure: Velocity Profiles - Effect of $\mathrm{m}\left(B_{f}=0\right)$
Adv $\operatorname{Pr} \operatorname{Gr}$ causes Flow thickening whereas Fav $\operatorname{Pr} \operatorname{Gr}$ causes Flow thinning .

Effect of Suction/Blowing - L7($\frac{11}{14}$)

(1) Recall that $B_{f}=\left(V_{w}(x) / U_{\infty}(x)\right) R e_{x}^{0.5}=$ constant for similarity solutions to exist.
(2) Therefore, since $U_{\infty}=C x^{m}$,

$$
\begin{equation*}
V_{w} \propto\left(\frac{U_{\infty}}{X}\right)^{0.5} \propto x^{(m-1) / 2} \tag{17}
\end{equation*}
$$

(3) Solutions obtained for $\mathrm{m}=0$ and $\mathrm{m}=1$ are shown on the next slide

Effect of $B_{f}(\mathrm{~m}=0)-\mathrm{L} 7\left(\frac{12}{14}\right)$

Flat Plate Flow

B_{f}	$f^{\prime \prime}(0)$	δ^{*}	δ_{1}^{*}	δ_{2}^{*}
-2.0	2.063	1.87	0.439	0.212
-1.0	1.155	2.80	0.728	0.336
-0.5	0.723	3.60	1.04	0.456
0.0	0.330	4.90	1.727	0.663
0.3	0.134	6.33	2.69	0.868
0.5	0.0351	8.40	4.406	1.07
0.612	0.0	-	-	-

(1) $B_{f}<0$ represents Suction
(2) $B_{f}>0$ represents Blowing
(3) $B_{f}=0.612$ represents Separation due to blowing

Effect of $B_{f}(\mathbf{m}=1)-\mathbf{L} 7\left(\frac{13}{14}\right)$

Stagnation Point Flow

B_{f}	$f^{\prime \prime}(0)$	δ^{*}	δ_{1}^{*}	δ_{2}^{*}
-2.0	2.611	1.4	0.337	0.161
-1.0	1.865	1.80	0.454	0.213
-0.5	1.53	2.07	0.538	0.247
0.0	1.229	2.38	0.643	0.290
0.3	1.069	2.59	0.719	0.320
0.5	0.972	2.73	0.776	0.342
1.0	0.763	3.16	0.939	0.403

Even for $B_{f}=1.0$, Separation does not occur

Velocity Profiles - L6($\frac{14}{14}$)

Flat Plate
Stagnation Point

Notice zero velocity gradient for $B_{f}=0.612$

