ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-6 SIMILARITY METHOD

LECTURE-6 SIMILARITY METHOD

- Notion of Similarity of Profiles
- Condition for Existence of Similarity Solutions
- Similarity Equation and Boundary Conditions

2D BL Eqns - L6 $(\frac{1}{12})$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(1)

$$\rho \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{dp_{\infty}}{d x} + \mu \frac{\partial^2 u}{\partial y^2}$$
(2)

$$-\frac{dp_{\infty}}{d x} = \rho U_{\infty} \frac{d U_{\infty}}{d x}$$
(3)

Boundary Conditions:

- at y = 0, u = 0, $v = V_w$ (x) (Suction/Blowing Velocity)
- 3 as y $\rightarrow \infty$, u = U_{∞} (x) (Free Stream Velocity)

Notion of Similarity of Profiles - $L6(\frac{2}{12})$

- The term *similarity* is associated with the possibility that under certain conditions, the velocity profiles at different streamwise locations (*x*₁, *x*₂, *x*₃ say) in the boundary layer will be similar in shape.
- Then, actual magnitudes of u at same y at different locations may differ by a stretching factor s (x) that is a function of the streamwise distance x only.

$$u(x, y) = u(\overline{\eta})$$
(4)

$$v(x, y) = v(\overline{\eta}) \text{ and, (5)}$$

$$\overline{\eta} = y \times S(x)$$
(6)

$\overline{\eta}$ is called Similarity Variable

Search for Similarity Condition - I - L6($\frac{3}{12}$)

- The relations suggest that if similarity exists then velocity profiles u (x, y) and v (x, y) at any streamwise location can be *collapsed* on a single curve
- This is because u and v that were functions of two independent variables x and y are now functions of a single variable not only
- The Partial Differential Equations (PDEs) of the boundary layer can therefore be reduced to Ordinary Differential Equations. (ODEs)
- Such a reduction is however possible only when $U_{\infty}(x)$, $V_{w}(x)$ and S(x) assume certain restricted forms known as *similarity conditions*.

・ロト ・ 四ト ・ ヨト ・ ヨト

Search for Sim Cond - II - $L6(\frac{4}{12})$

$$\rho \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = \rho U_{\infty} \frac{d U_{\infty}}{d x} + \mu \frac{\partial^2 u}{\partial y^2}$$
(7)

Define Stream Function ψ (x, y) such that continuity equation $\partial u/\partial x + \partial v/\partial y = 0$ is satisfied.

$$\frac{\partial \psi}{\partial \mathbf{y}} \equiv \mathbf{u}$$
 ; $\frac{\partial \psi}{\partial \mathbf{x}} \equiv -\mathbf{v}$ (8)

Substitution gives ψ Equation

$$\frac{\partial \psi}{\partial y} \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial \psi}{\partial x} \frac{\partial^2 \psi}{\partial y^2} = U_{\infty} \frac{d U_{\infty}}{d x} + \nu \frac{\partial^3 \psi}{\partial y^3}$$
(9)

Search for Sim Cond	- III - L6(<u>5</u> 12)
Define	$\partial \psi$ dZ
$\psi(\mathbf{x},\mathbf{y}) \equiv \mathbf{n}(\mathbf{x}) \mathbf{Z}(\overline{\eta})$ (10)	$\frac{\partial \varphi}{\partial y} = U_{\infty} \frac{dz}{d\overline{\eta}}$
$\frac{u}{U} \equiv \frac{dZ}{dZ} $ (11)	$\frac{\partial^2 \psi}{\partial t^2} = \frac{U_{\infty}^2}{2} \frac{d^2 Z}{dt^2}$
$oldsymbol{U}_\infty$ a η	∂y^2 n $d\overline{\eta}^2$
Then	$\frac{\partial^3 \psi}{\partial x^2} = \frac{U_{\infty}^3}{r^2} \frac{d^3 Z}{r^3}$
μ 1 $\partial \eta / \eta$	∂y^{s} $n^{2} d\eta^{s}$
$\frac{u}{U_{\infty}} = \frac{1}{U_{\infty}} \frac{\partial \varphi}{\partial y}$	$\frac{\partial \psi}{\partial x} = Z \frac{dn}{dx} + n \frac{dZ}{d\overline{\eta}} \frac{\partial \overline{\eta}}{\partial x}$
$\frac{dZ}{d\overline{\eta}} = \frac{1}{U_{\infty}} \frac{\partial \psi}{\partial \overline{\eta}} \times \frac{\partial \overline{\eta}}{\partial y}$	$\frac{\partial^2 \psi}{\partial t} = \frac{\partial}{\partial t} \left(U_{\infty} \frac{dZ}{dt} \right)$
$\frac{dZ}{dZ} = \frac{n}{dZ} \frac{dZ}{d\pi}$	$\partial x \partial y \qquad \partial x \overset{\frown}{}^{\infty} d\overline{\eta}$
$\frac{\mathrm{d}z}{\mathrm{d}\overline{\eta}} = \frac{\mathrm{d}}{\mathrm{U}_{\infty}} \times \frac{\mathrm{d}z}{\mathrm{d}\overline{\eta}} \times \frac{\mathrm{d}\eta}{\mathrm{d}y}$	$= \frac{dZ}{d\overline{n}}\frac{dU_{\infty}}{dx}$
Hence $\frac{\partial \overline{\eta}}{\partial u} = \frac{U_{\infty}}{n} = S(x)$	$d^{2}Z \partial \overline{\eta}$
oy n	$+ U_{\infty} \overline{d\overline{\eta}^{2}} \overline{d\overline{\chi}} = 0 < 0$

Search for Sim Cond - IV - $L6(\frac{6}{12})$

Replacing derivatives in the ψ equation 9

$$Z''' + \beta_1 Z Z'' + \beta_2 (1 - Z'^2) = 0$$
(12)

$$Z' = dZ / d\overline{\eta}$$
(13)

$$\beta_1 = \frac{n}{\nu U_{\infty}} \frac{d n}{d x}$$
(14)

$$\beta_2 = \frac{n^2}{\nu U_{\infty}^2} \frac{d U_{\infty}}{d x}$$
(15)

Boundary Conditions:

Search for Sim Con - V - L6($\frac{7}{12}$) Equation $Z''' + \beta_1 Z Z'' + \beta_2 (1 - Z'^2) = 0$ will be an ODE if β_1, β_2 and Z (0) are absolute constants. Hence, Consider

$$2\beta_1 - \beta_2 = \frac{2n}{\nu U_{\infty}} \frac{d n}{d x} - \frac{n^2}{\nu U_{\infty}^2} \frac{d U_{\infty}}{d x} = \frac{d}{d x} \left[\frac{n^2}{\nu U_{\infty}} \right]$$

or, integrating from x = 0 to x = x,

$$(2\beta_1 - \beta_2) x = \frac{n^2}{\nu U_{\infty}}$$

Multiplying both sides by $U_{\infty}^{-1} d U_{\infty}/d x$,

$$\frac{d U_{\infty}}{U_{\infty}} = \left(\frac{\beta_2}{2\beta_1 - \beta_2}\right) \frac{d x}{x}$$

Integration gives Similarity conditions.

Search for Sim Cond - VI - L6($\frac{8}{12}$)

$$U_{\infty} = C x^{\left(\frac{\beta_{2}}{2\beta_{1}-\beta_{2}}\right)}$$
(16)

$$n(x) = \sqrt{\nu} U_{\infty} (2\beta_{1}-\beta_{2}) x$$
(17)

$$\overline{\eta} = y S(X) = \frac{y U_{\infty}}{n} = y \sqrt{\frac{U_{\infty}}{\nu (2\beta_{1}-\beta_{2}) x}}$$
(18)

$$\psi = Z (\overline{\eta}) \sqrt{\nu} U_{\infty} (2\beta_{1}-\beta_{2}) x$$
(19)

$$Z(0) = -\frac{V_{w}(x)}{dn/dx} = \text{constant}$$
(20)

э

< ロ > < 同 > < 回 > < 回 >

Useful Deduction - $L6(\frac{9}{12})$

Without loss of generality, we set $\beta_1 = 1$ and $\beta_2 = \beta$. Then

$$Z''' + ZZ'' + \beta(1 - Z'^{2}) = 0$$

$$U_{\infty} = C x^{\left(\frac{\beta}{2-\beta}\right)}$$

$$n(x) = \sqrt{\nu U_{\infty} (2-\beta) x}$$

$$\overline{\eta} = y \sqrt{\frac{U_{\infty}}{\nu (2-\beta) x}}$$

$$\psi = Z(\overline{\eta}) \sqrt{\nu U_{\infty} (2-\beta) x}$$

$$\psi = Z(\overline{\eta}) \sqrt{\nu U_{\infty} (2-\beta) x}$$

$$\psi_{\text{STACKATION FORM FLOW}$$

$$\psi_{\text{STACKATION FLOW}}$$

$$\psi_{\text{STACKATION FLOW}$$

$$\psi_{\text{STACKATION FLOW}}$$

$$\psi_{\text{STACKATION FLOW}$$

3

4 E N 4 E N

 $\beta < -0.2$ represents Flow

(See Next Lecture)

Separation . Hence Elliptic Flow

Change of Definitions - $L6(\frac{10}{12})$

For convenience, we redefine parameters as

$$U_{\infty} = C x^{m}$$
(21)

$$m = \frac{\beta}{2-\beta} \text{ or } \beta = \frac{2m}{m+1}$$
(22)

$$\eta = y \sqrt{\frac{U_{\infty}}{\nu x}} = \overline{\eta} \sqrt{2-\beta}$$
(23)

$$f'(\eta) = z'(\overline{\eta}) = \frac{u}{U_{\infty}}$$
(24)

New Similarity Equation - $L6(\frac{11}{12})$

Then, the Z-equation will transform to

$$f''' + \left(\frac{m+1}{2}\right) f f'' + m \left(1 - f'^{2}\right) = 0$$
(25)

$$\psi = f(\eta) \sqrt{\nu U_{\infty} x} \quad v = -\frac{\partial \psi}{\partial x}$$
(26)

$$\frac{\nu}{U_{\infty}} Re_{x}^{0.5} = -\left(\frac{m+1}{2}\right) \left\{ f + \left(\frac{m-1}{m+1}\right) \eta f' \right\}$$
(27)

$$f(0) = -B_{f}\left(\frac{2}{m+1}\right)$$
(28)

$$f'(0) = 0 \quad \text{and} \quad f'(\infty) = 1$$
(29)

$$B_{f} = \frac{V_{w}(x)}{U_{\infty}(x)} Re_{x}^{0.5} \quad Re_{x} = \frac{U_{\infty} x}{\nu}$$
(30)

 B_f is called Blowing Parameter and must be constant for similarity solutions to exist.

Summary - L6(¹²/₁₂)

- We have transformed the 2D Boundary Layer PDE to a 3rd order ODE $f''' + (\frac{m+1}{2}) f f'' + m(1 f'^2) = 0$
- The ODE is valid for $U_{\infty} = C x^m$ and $(V_w(x)/U_{\infty}(x)) Re_x^{0.5} = B_f$ = constant only.
- **(a)** The independent similarity variable is $\eta = y \sqrt{U_{\infty}/(\nu x)}$
- For m > 0, we have Accelerating Flow and hence the Pressure Gradient dp / dx = $\rho U_{\infty} dU_{\infty}/dx$ is negative . This is called Favourable Pressure Gradient
- For *m* < 0, we have De-celerating Flow and Adverse Pressure Gradient.
- For m = 0, we have U_{∞} = constant and dp / dx = 0. It is called Flat Plate Flow. For m = 1, we have Stagnation Point Accelerating Flow
 - Hence, m is called Pressure Gradient Parameter