# ME-662 CONVECTIVE HEAT AND MASS TRANSFER 

A. W. Date<br>Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-6 SIMILARITY METHOD

## LECTURE-6 SIMILARITY METHOD

(1) Notion of Similarity of Profiles
(2) Condition for Existence of Similarity Solutions
(3) Similarity Equation and Boundary Conditions

## 2D BL Eqns - L6( $\frac{1}{12}$ )

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0  \tag{1}\\
\rho\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]=-\frac{d p_{\infty}}{d x}+\mu \frac{\partial^{2} u}{\partial y^{2}}  \tag{2}\\
-\frac{d p_{\infty}}{d x}=\rho U_{\infty} \frac{d U_{\infty}}{d x} \tag{3}
\end{gather*}
$$

Boundary Conditions:
(1) at $\mathrm{y}=0, \mathrm{u}=0, \mathrm{v}=V_{w}(\mathrm{x})$ (Suction/Blowing Velocity)
(2) as $\mathrm{y} \rightarrow \infty, \mathrm{u}=U_{\infty}(\mathrm{x})$ ( Free Stream Velocity )

## Notion of Similarity of Profiles - L6( $\frac{2}{12}$ )

(1) The term similarity is associated with the possibility that under certain conditions, the velocity profiles at different streamwise locations ( $x_{1}, x_{2}, x_{3}$ say ) in the boundary layer will be similar in shape.
(2) Then, actual magnitudes of $u$ at same $y$ at different locations may differ by a stretching factor $\mathrm{s}(\mathrm{x})$ that is a function of the


$$
\begin{align*}
& u(x, y)=u(\bar{\eta})  \tag{4}\\
& v(x, y)=v(\bar{\eta}) \quad \text { and }, \tag{5}
\end{align*}
$$

$\bar{\eta}$ is called Similarity Variable streamwise distance x only.

## Search for Similarity Condition - I- L6( $\left.\frac{3}{12}\right)$

(1) The relations suggest that if similarity exists then velocity profiles $u(x, y)$ and $v(x, y)$ at any streamwise location can be collapsed on a single curve
(2) This is because $u$ and $v$ that were functions of two independent variables $x$ and $y$ are now functions of a single variable $\bar{\eta}$ only
(3) The Partial Differential Equations ( PDEs ) of the boundary layer can therefore be reduced to Ordinary Differential Equations. ( ODEs)
(9) Such a reduction is however possible only when $U_{\infty}(x)$, $V_{w}(x)$ and $S(x)$ assume certain restricted forms known as similarity conditions.

## Search for Sim Cond - II - L6 $\left(\frac{4}{12}\right)$

$$
\begin{equation*}
\rho\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]=\rho U_{\infty} \frac{d U_{\infty}}{d x}+\mu \frac{\partial^{2} u}{\partial y^{2}} \tag{7}
\end{equation*}
$$

Define Stream Function $\psi(\mathrm{x}, \mathrm{y})$ such that continuity equation $\partial u / \partial x+\partial v / \partial y=0$ is satisfied.

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \equiv u \quad ; \quad \frac{\partial \psi}{\partial x} \equiv-v \tag{8}
\end{equation*}
$$

Substitution gives $\psi$ Equation

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}=U_{\infty} \frac{d U_{\infty}}{d x}+\nu \frac{\partial^{3} \psi}{\partial y^{3}} \tag{9}
\end{equation*}
$$

## Search for Sim Cord - III - L6( $\left.\frac{5}{12}\right)$

Define

$$
\begin{align*}
\psi(x, y) & \equiv n(x) Z(\bar{\eta})(10) \\
\frac{u}{U_{\infty}} & \equiv \frac{d Z}{d \bar{\eta}} \tag{11}
\end{align*}
$$

Then

$$
\begin{aligned}
\frac{\partial \psi}{\partial y} & =U_{\infty} \frac{d Z}{d \bar{\eta}} \\
\frac{\partial^{2} \psi}{\partial y^{2}} & =\frac{U_{\infty}^{2}}{n} \frac{d^{2} Z}{d \bar{\eta}^{2}} \\
\frac{\partial^{3} \psi}{\partial y^{3}} & =\frac{U_{\infty}^{3}}{n^{2}} \frac{d^{3} Z}{d \bar{\eta}^{3}} \\
\frac{\partial \psi}{\partial x} & =Z \frac{d n}{d x}+n \frac{d Z}{d \bar{\eta}} \frac{\partial \bar{\eta}}{\partial x} \\
\frac{\partial^{2} \psi}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(U_{\infty} \frac{d Z}{d \bar{\eta}}\right) \\
& =\frac{d Z}{d \bar{\eta}} \frac{d U_{\infty}}{d x} \\
& +U_{\infty} \frac{d^{2} Z}{d \bar{\eta}^{2}} \frac{\partial \bar{\eta}}{\partial x}
\end{aligned}
$$

Hence $\frac{\partial \bar{\eta}}{\partial y}=\frac{U_{\infty}}{n}=S(x)$

## Search for Sim Cond - IV - L6( $\left.\frac{6}{12}\right)$

Replacing derivatives in the $\psi$ equation 9

$$
\begin{array}{rl}
Z^{\prime \prime \prime}+\beta_{1} & Z Z^{\prime \prime}+\beta_{2}\left(1-Z^{\prime 2}\right)=0 \\
Z^{\prime} & =d Z / d \bar{\eta} \\
\beta_{1} & =\frac{n}{\nu U_{\infty}} \frac{d n}{d x} \\
\beta_{2} & =\frac{n^{2}}{\nu U_{\infty}^{2}} \frac{d U_{\infty}}{d x} \tag{15}
\end{array}
$$

Boundary Conditions:
(1) $V_{w}=-(\partial \psi / \partial x)_{y=0}=-Z(0) d n / d x$. Hence, $Z(0)=-V_{w}(x) /(d n / d x)$
(2) $Z^{\prime}(0)=0$ ( No-Slip Condition )
(3) $Z^{\prime}(\infty)=1$ ( Free Stream Condition )

## Search for Sim Con - V - L6 ( $\left(\frac{7}{12}\right)$

Equation $Z^{\prime \prime \prime}+\beta_{1} Z Z^{\prime \prime}+\beta_{2}\left(1-Z^{\prime 2}\right)=0$ will be an ODE if $\beta_{1}, \beta_{2}$ and $Z(0)$ are absolute constants. Hence, Consider

$$
2 \beta_{1}-\beta_{2}=\frac{2 n}{\nu U_{\infty}} \frac{d n}{d x}-\frac{n^{2}}{\nu U_{\infty}^{2}} \frac{d U_{\infty}}{d x}=\frac{d}{d x}\left[\frac{n^{2}}{\nu U_{\infty}}\right]
$$

or, integrating from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{x}$,

$$
\left(2 \beta_{1}-\beta_{2}\right) x=\frac{n^{2}}{\nu U_{\infty}}
$$

Multiplying both sides by $U_{\infty}^{-1} d U_{\infty} / d x$,

$$
\frac{d U_{\infty}}{U_{\infty}}=\left(\frac{\beta_{2}}{2 \beta_{1}-\beta_{2}}\right) \frac{d x}{x}
$$

Integration gives Similarity conditions.

## Search for Sim Cond - VI - L6 $\left(\frac{8}{12}\right)$

$$
\begin{align*}
U_{\infty} & =C x^{\left(\frac{\beta_{2}}{2 \beta_{1}-\beta_{2}}\right)}  \tag{16}\\
n(x) & =\sqrt{\nu U_{\infty}\left(2 \beta_{1}-\beta_{2}\right) x}  \tag{17}\\
\bar{\eta} & =y S(X)=\frac{y U_{\infty}}{n}=y \sqrt{\frac{U_{\infty}}{\nu\left(2 \beta_{1}-\beta_{2}\right) x}}  \tag{18}\\
\psi & =Z(\bar{\eta}) \sqrt{\nu U_{\infty}\left(2 \beta_{1}-\beta_{2}\right) x}  \tag{19}\\
Z(0) & =-\frac{V_{w}(x)}{d n / d x}=\mathrm{constant} \tag{20}
\end{align*}
$$

## Useful Deduction - L6 $\left(\frac{9}{12}\right)$

Without loss of generality, we set $\beta_{1}=1$ and $\beta_{2}=\beta$. Then

$$
\begin{aligned}
Z^{\prime \prime \prime} & +z Z^{\prime \prime}+\beta\left(1-Z^{\prime 2}\right)=0 \\
U_{\infty} & =C x^{\left(\frac{\beta}{2-\beta}\right)} \\
n(x) & =\sqrt{\nu U_{\infty}(2-\beta) x} \\
\bar{\eta} & =y \sqrt{\frac{U_{\infty}}{\nu(2-\beta) x}}
\end{aligned}
$$



$\psi=Z(\bar{\eta}) \sqrt{\nu U_{\infty}(2-\beta) x}$ Potential Flow Theory shows
$Z(0)=-\frac{V_{w}(x)}{}=$ constant that $U_{\infty}=C x^{\left(\frac{\beta}{2-\beta}\right)}$ represents flow over a Wedge of angle $\pi \beta$. $\beta<-0.2$ represents Flow
Separation. Hence Elliptic Flow ( See Next Lecture )

## Change of Definitions - L6 $\left(\frac{10}{12}\right)$

For convenience, we redefine parameters as

$$
\begin{align*}
U_{\infty} & =C x^{m}  \tag{21}\\
m & =\frac{\beta}{2-\beta} \text { or } \beta=\frac{2 m}{m+1}  \tag{22}\\
\eta & =y \sqrt{\frac{U_{\infty}}{\nu x}}=\bar{\eta} \sqrt{2-\beta}  \tag{23}\\
f^{\prime}(\eta) & =z^{\prime}(\bar{\eta})=\frac{u}{U_{\infty}} \tag{24}
\end{align*}
$$

## New Similarity Equation - L6( $\left.\frac{11}{12}\right)$

Then, the Z-equation will transform to

$$
\begin{align*}
f^{\prime \prime \prime} & +\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)=0  \tag{25}\\
\psi & =f(\eta) \sqrt{\nu U_{\infty} x} \quad v=-\frac{\partial \psi}{\partial x}  \tag{26}\\
\frac{v}{U_{\infty}} R e_{x}^{0.5} & =-\left(\frac{m+1}{2}\right)\left\{f+\left(\frac{m-1}{m+1}\right) \eta f^{\prime}\right\}  \tag{27}\\
f(0) & =-B_{f}\left(\frac{2}{m+1}\right)  \tag{28}\\
f^{\prime}(0) & =0 \quad \text { and } \quad f^{\prime}(\infty)=1  \tag{29}\\
B_{f} & =\frac{V_{w}(x)}{U_{\infty}(x)} R e_{x}^{0.5} \quad R e_{x}=\frac{U_{\infty} x}{\nu} \tag{30}
\end{align*}
$$

$B_{f}$ is called Blowing Parameter and must be constant for similarity solutions to exist.

## Summary - L6( $\frac{12}{12}$ )

(1) We have transformed the 2D Boundary Layer PDE to a 3rd order ODE $f^{\prime \prime \prime}+\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)=0$
(2) The ODE is valid for $U_{\infty}=C x^{m}$ and $\left(V_{w}(x) / U_{\infty}(x)\right) R e_{x}^{0.5}=B_{f}=$ constant only.
(3) The independent similarity variable is $\eta=y \sqrt{U_{\infty} /(\nu x)}$
(9) For $m>0$, we have Accelerating Flow and hence the Pressure Gradient $\mathrm{dp} / \mathrm{dx}=-\rho U_{\infty} d U_{\infty} / d x$ is negative . This is called Favourable Pressure Gradient
(3) For $m<0$, we have De-celerating Flow and Adverse Pressure Gradient .
(6) For $m=0$, we have $U_{\infty}=$ constant and $d p / d x=0$. It is called Flat Plate Flow. For $m=1$, we have Stagnation Point Accelerating Flow
(3) Hence, $m$ is called Pressure Gradient Parameter

