ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-42 DIFFUSION JET FLAMES

LECTURE-42 DIFFUSION JET FLAMES

(1) Definition
(2) Governing Eqns
(3) Laminar Jet
(1) Velocity Prediction
(2) Flame Length and Shape Prediction
(0) Turbulent Jet
(1) Velocity Prediction
(2) Flame Length and Shape Prediction

Definition L42($\frac{1}{19}$)

In diffusion flames, the source of fuel and oxidiser are physically separated. The candle flame is an example. In combustion of gaseous hydrocarbon fuels, fuel flows through the inner pipe of the burner whereas the air flows through the concentric outer pipe.

Main Objective L42($\frac{2}{19}$)

The main objective is to predict
(C) Flame Length L_{f}
(2) Flame shape or $r_{f}(x)$
in stagnant surroundings assuming SCR:
1 kg of fuel $+R_{\text {st }} \mathrm{kg}$ of oxidant air $=\left(1+R_{s t}\right)$ kg of product.

Governing Ens L42($\frac{3}{19}$)

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\rho_{m} u r\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r\right) & =0 \quad\left(\frac{d p}{d x}=0\right) \\
\frac{\partial}{\partial x}\left(\rho_{m} u r u\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r u\right) & =\frac{\partial}{\partial r}\left[\mu_{\text {eff }} r \frac{\partial u}{\partial r}\right] \\
\frac{\partial}{\partial x}\left(\rho_{m} u r \omega_{f u}\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r \omega_{f u}\right) & =\frac{\partial}{\partial r}\left[\rho_{m} D_{\text {eff }} r \frac{\partial \omega_{f u}}{\partial r}\right] \\
& -r\left|R_{f u}\right| \\
\frac{\partial}{\partial x}\left(\rho_{m} u r \omega_{o x}\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r \omega_{o x}\right) & =\frac{\partial}{\partial r}\left[\rho_{m} D_{\text {eff }} r \frac{\partial \omega_{o x}}{\partial r}\right] \\
& -r\left|R_{o x}\right| \\
\frac{\partial}{\partial x}\left(\rho_{m} u r h_{m}\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r h_{m}\right) & =\frac{\partial}{\partial r}\left[\frac{k_{\text {eff }}}{c_{p m}} r \frac{\partial h_{m}}{\partial r}\right] \\
& +r\left|R_{f u}\right| \Delta H_{c}
\end{aligned}
$$

Laminar Vel Prediction-1-L42($\left.\frac{4}{19}\right)$

Main assumption: Properties are uniform

$$
\begin{aligned}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial r}+\frac{v}{r} & =0 \text { and } \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial r} & =\frac{\nu_{m}}{r} \frac{\partial}{\partial r}\left[r \frac{\partial u}{\partial r}\right] \\
\psi(x, \eta) \equiv \nu_{m} x f(\eta) & \text { and } \eta \equiv C \frac{r}{x} \\
u & \equiv \frac{1}{r} \frac{\partial \psi}{\partial r}=\frac{C^{2} \nu_{m}}{x}\left[\frac{f^{\prime}}{\eta}\right] \\
v & \equiv-\frac{1}{r} \frac{\partial \psi}{\partial x}=\frac{C \nu_{m}}{x}\left[f^{\prime}-\frac{f}{\eta}\right]
\end{aligned}
$$

Boundary conditions are: $f(0)=f^{\prime}(0)=0$ and $f^{\prime}(\infty)=0$.

Laminar Vel Prediction - 2 - L42($\frac{5}{19}$)

Substitutions give similarity Eqn

$$
\begin{aligned}
\frac{f f^{\prime}}{\eta^{2}}-\frac{f f^{\prime \prime}}{\eta}-\frac{f^{\prime 2}}{\eta} & =\frac{d}{d \eta}\left[f^{\prime \prime}-\frac{f}{\eta}\right] \text { or } \\
\frac{d}{d \eta}\left[f^{\prime \prime}-\frac{f}{\eta}+\frac{f f^{\prime}}{\eta}\right] & =0
\end{aligned}
$$

Integrating from $\eta=0$ to η and noting BCs $f(0)=f^{\prime}(0)=0$, we get $f f^{\prime}=f^{\prime}-\eta f^{\prime \prime}$. The soln is

$$
\begin{aligned}
& f=\frac{\eta^{2}}{1+\eta^{2} / 4}, \quad f^{\prime}=\frac{2 \eta}{\left(1+\eta^{2} / 4\right)^{2}}, \quad f^{\prime \prime}=\frac{2\left(1-3 \eta^{2} / 4\right)}{\left(1+\eta^{2} / 4\right)^{3}} \text { or } \\
& u=\frac{C^{2} \nu_{m}}{x}\left[\frac{2}{\left(1+\eta^{2} / 4\right)^{2}}\right], \quad v=\frac{C \nu_{m}}{x}\left[\frac{\eta-\eta^{3} / 4}{\left(1+\eta^{2} / 4\right)^{2}}\right]
\end{aligned}
$$

Determination of C-L42($\frac{6}{19}$)

Multiply momentum eqn by r and integrate from $r=0$ to $r=\infty$. Then

$$
\begin{aligned}
\frac{\partial}{\partial x}\left[\int_{0}^{\infty} \rho_{m} u^{2} r d r\right] & +\left\{\left.\rho_{m} v u r\right|_{\infty}-\left.\rho_{m} v u r\right|_{0}\right\} \\
& =\left\{\left.\mu_{m} r \frac{\partial u}{\partial r}\right|_{\infty}-\left.\mu_{m} r \frac{\partial u}{\partial r}\right|_{0}\right\}
\end{aligned}
$$

From BCs, terms in curly brackets are zero.
Hence, substituting for u, we have

$$
\begin{aligned}
J_{\text {mom }} & =2 \pi \int_{0}^{\infty} \rho_{m} u^{2} r d r \\
& =\frac{16}{3} \pi \rho_{m} \nu_{m}^{2} C^{2}=\rho_{0} U_{0}^{2}\left(\frac{\pi}{4} D^{2}\right)=\text { constant } \\
C & =\frac{\sqrt{3}}{8} \operatorname{Re}\left(\frac{\rho_{0}}{\rho_{m}}\right)^{0.5}=\frac{1}{4 \nu_{m}} \sqrt{\frac{3 J_{\text {mom }}}{\pi \rho_{m}}} \rightarrow \operatorname{Re}=\frac{U_{0} D}{\nu_{m}}
\end{aligned}
$$

Final Soln - L42($\left.\frac{7}{19}\right)$

$$
\begin{aligned}
\eta & =\frac{\sqrt{3}}{8}\left(\frac{\rho_{0}}{\rho_{m}}\right)^{0.5} \operatorname{Re} \frac{r}{x} \\
u^{*} & =\frac{u x}{\nu_{m}}=\frac{3}{32} R^{2}\left[1+\eta^{2} / 4\right]^{-2}\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{u}{U_{0}} & =\frac{3}{32}\left(\frac{D}{x}\right) \operatorname{Re}\left[1+\eta^{2} / 4\right]^{-2}\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{u}{u_{\max }} & =\frac{1}{\left(1+\eta^{2} / 4\right)^{2}} \rightarrow \frac{u}{u_{\max }}=\frac{1}{2} \text { at } \eta_{1 / 2}=1.287
\end{aligned}
$$

Because at any $\mathrm{x}, \mathrm{u} \rightarrow 0$ as $y \rightarrow \infty$, it is difficult to identify the jet-width exactly. Hence, by convention, $\eta_{1 / 2}$ characterises the jet half-width ($r_{1 / 2}$). Thus,
$\frac{r_{1 / 2}}{x}=\frac{\eta_{1 / 2}}{C}=1.287 \times \frac{8}{\sqrt{3} R e}\left(\frac{\rho_{0}}{\rho_{m}}\right)^{-0.5}=\frac{5.945}{R e}\left(\frac{\rho_{0}}{\rho_{m}}\right)^{-0.5}=\tan \alpha$ where α is the jet-spread angle.

Prediction of L_{f} and $r_{f}(\mathbf{x})-1-\operatorname{L42}\left(\frac{8}{19}\right)$

 Assuming Le $=1$ and SCR, all eqns can be rendered in conserved-property form$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\rho_{m} u r \Phi\right)+\frac{\partial}{\partial r}\left(\rho_{m} v r \Phi\right) & =\frac{\partial}{\partial r}\left[\Gamma_{m} r \frac{\partial \Phi}{\partial r}\right] \\
\Phi=\omega_{f u}-\frac{\omega_{o x}}{R_{s t}}=h_{m}+\Delta H_{c} \omega_{f u} & =\frac{u}{U_{0}} \rightarrow R_{s t}=\frac{A}{F}
\end{aligned}
$$

To locate the flame, we define conserved scalar $\Phi=f$

$$
f \equiv \frac{\Phi-\Phi_{A}}{\Phi_{F}-\Phi_{A}}=\frac{\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)-\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)_{A}}{\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)_{F}-\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)_{A}}
$$

where subscripts A and F refer to Air and Fuel Streams . Hence,

$$
f=\frac{\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)+1 / R_{s t}}{1+1 / R_{s t}} \text { because } \omega_{o x, \infty}=\omega_{f u, F}=1
$$

Prediction of L_{f} and $r_{f}(\mathbf{x})$-2-L42($\left.\frac{9}{19}\right)$

The flame is located where $\left(\omega_{f u}-\omega_{o x} / R_{s t}\right)=0$. Hence,

$$
\begin{aligned}
f & =f_{\text {stoich }}=1 /\left(1+R_{s t}\right) \quad \text { (flame edge) } \\
f & \left.=t_{\text {stoich }}+\omega_{\text {fut }} /\left(1+1 / R_{s t}\right) \quad \text { (inside) }\right) \\
f & =f_{\text {stoich }}-\left(\omega_{o x} / R_{s t}\right) /\left(1+1 / R_{s t}\right) \quad \text { (outside) }
\end{aligned}
$$

(a) STATES OF MIXTURE FRACTION f
(b) STATES OF MASS FRACTIONS

Prediction of L_{f} and $r_{f}(\mathbf{x})$ - $3-\operatorname{L42}\left(\frac{10}{19}\right)$

If we take $\Phi=h^{*}=h_{m}+\Delta H_{c} \omega_{\text {fu }}$ then

$$
\begin{aligned}
f=h^{*} & =\frac{\left(h_{m}+\Delta H_{c} \omega_{f u}\right)-\left(h_{m}+\Delta H_{c} \omega_{f u}\right)_{A}}{\left(h_{m}+\Delta H_{c} \omega_{f u}\right)_{F}-\left(h_{m}+\Delta H_{c} \omega_{f u}\right)_{A}} \\
& =\frac{c p_{m}\left(T-T_{\infty}\right)+\Delta H_{c} \omega_{f u}}{c p_{m}\left(T_{0}-T_{\infty}\right)+\Delta H_{c}}
\end{aligned}
$$

Thus, noting that r_{f} corresponds to $\eta_{f}=C\left(r_{f} / x\right)$ and $f_{\text {stoich }}$, and $r_{f}=0$ at $\mathrm{x}=L_{f}$

$$
\begin{aligned}
\Phi & =\frac{u}{U_{0}}=f=h^{*}=\frac{3}{32}\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right) \operatorname{Re}\left(1+\eta^{2} / 4\right)^{-2} \\
\frac{r_{f}}{x} & =\frac{16}{3^{0.5} R e}\left(\frac{\rho_{m}}{\rho_{0}}\right)^{0.5}\left[\left\{\frac{3}{32}\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right) \frac{R e}{f_{\text {stoich }}}\right\}^{0.5}-1\right]^{0.5} \\
\frac{L_{f}}{D} & =\frac{3}{32}\left(\frac{\rho_{0}}{\rho_{m}}\right) \frac{R e}{f_{\text {stoich }}}=\frac{3}{32} \operatorname{Re}\left(1+R_{\text {st }}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)
\end{aligned}
$$

Turbulent Jet Flame - L42($\frac{11}{19}$)

(1) In Laminar flames, L_{f} increases with U_{0},
(2) In Turbulent flames, $L_{f} \simeq$ const.and
(3) Radial distribution of u is nearly uniform over greater part of δ.

Eqns of slide 3 apply with

$$
\begin{aligned}
& \rho_{m} D_{\text {eff }} \simeq \frac{\mu_{\text {eff }}}{S c_{t}} \\
& \rho_{m} \alpha_{\text {eff }} \simeq \frac{\mu_{\text {eff }}}{P r_{t}}
\end{aligned}
$$

with $S c_{t}=P r_{t}=0.9$

Velocity Prediction - 1-L42($\frac{12}{19}$)

(1) The simplest formula ${ }^{1}$ is $\mu_{\text {eff }}=0.01 \times \rho_{m}\left|u_{\infty}-u_{a x}\right| \delta$
(2) For stagnant surroundings $u_{\infty}=0$ and $u_{a x}=u_{\max }$. Also, from experiments, $\left(\delta / r_{1 / 2}\right) \simeq 2.5$. Hence, $\mu_{\text {eff }}=0.0256 \rho_{m} u_{\text {max }} r_{1 / 2} \neq F(r)$
(3) Thus, all laminar solns apply with μ changed to $\mu_{\text {eff }}$. Hence

$$
\begin{aligned}
u_{\max }^{*} & =\frac{u_{\max } x}{\nu_{m}}=\left(\frac{3}{32}\right) R e_{\text {turb }}^{2}\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{r_{1 / 2}}{x} & =\frac{5.945}{R e_{\text {turb }}}\left(\frac{\rho_{0}}{\rho_{m}}\right)^{-0.5} \\
& =5.945 \times\left[\frac{0.0256 \rho_{m} u_{\max } r_{1 / 2}}{\rho_{m} U_{0} D}\right]\left(\frac{\rho_{0}}{\rho_{m}}\right)^{-0.5} \text { Hence } \\
\frac{u_{\max }}{U_{0}} & =6.57\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)^{0.5} \text { or, Combining with } u_{\max }^{*}
\end{aligned}
$$

${ }^{1}$ Spalding D. B. Combustion and Mass Transfer, Pergamon Press, Oxford (1979)

Velocity Prediction-2-L42($\left.\frac{13}{19}\right)$

$$
\begin{aligned}
\left(\frac{u_{\max }}{U_{0}}\right)^{2} & =3.662\left(\frac{D^{2}}{r_{1 / 2} x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{r_{1 / 2}}{x} & =\frac{3.662}{(6.57)^{2}}=0.0848 \text { constant }
\end{aligned}
$$

This result agrees very well with Expt data for (x / D) >6.5. Replacing $r_{1 / 2}$ and $u_{\max }$, we have

$$
\begin{aligned}
\mu_{\text {eff }} & =0.0256 \rho_{m} \times 6.57 U_{0}\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)^{0.5} \times(0.0848 x) \\
& =0.01426\left(\rho_{0} \rho_{m}\right)^{0.5} U_{0} D \simeq \text { constant }
\end{aligned}
$$

Also, since $\eta_{1 / 2}=1.287$,

$$
\eta=1.287\left(\frac{r}{r_{1 / 2}}\right) \rightarrow \frac{u}{u_{\max }}=\left[1+0.414\left(\frac{r}{r_{1 / 2}}\right)^{2}\right]^{-2}
$$

Prediction of L_{f} and $r_{f}(\mathbf{x})-1-\operatorname{L42}\left(\frac{14}{19}\right)$

(1) A turbulent flame is essentially unsteady and its edges are jagged. Fragments of gas intermittently detach from the main body of the flame and flare, diminishing in size. Turbulence affects not only L_{f} but also the entire reaction zone near the edge of the flame. Compared with a laminar flame, this zone is also much thicker .
(2) This implies that if the time-averaged values $\bar{\omega}_{f u}$ and $\bar{\omega}_{o x}$ are plotted with radius r, then the two profiles show considerable overlap around the crossover point $f=f_{\text {stoich }}$.
(3) Unlike the overlap in a laminar flame, which is caused by finite chemical kinetic rates, however, in turbulent diffusion flames, the overlap is caused by turbulence.
(9) In the presence of turbulence, $R_{f u}$ actually experienced is not as high as that estimated from $\bar{R}_{f u} \propto \bar{\omega}_{f u}^{x} \bar{\omega}_{o x}^{y}$. This is because the fuel and oxidant at a point are present at different times - must allow for probability .

Prediction of L_{f} and $r_{f}(\mathbf{x})-2-\operatorname{L42}\left(\frac{15}{19}\right)$

Since all laminar solutions are applicable to time-averaged quantities, we may write

$$
\bar{\Phi}=\frac{\bar{u}}{U_{0}}=\bar{f}=\overline{h^{*}}=6.57\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)\left[1+57.6\left(\frac{r}{x}\right)^{2}\right]^{-2}
$$

(a) TIME VARIATION OF f

(b) STATE DIAGRAM

Prediction of L_{f} and $r_{f}(\mathbf{x})-3-\operatorname{L42}\left(\frac{16}{19}\right)$

(1) With reference to the figure, suppose that the value of \hat{f} truly fluctuates between a low value \hat{f}_{l} and a high value \hat{f}_{h}.
(2) Let us assume that the fluid spends equal times at the two extremes and sharply moves from one extreme to the other
(3) Then, $\bar{f}=\frac{1}{2}\left(\hat{f}_{h}+\hat{f}_{l}\right)$ and $f^{\prime}=\frac{1}{2}\left(\hat{f}_{h}-\hat{f}_{l}\right)$
(9) Thus, $\bar{\omega}_{f u}=0.5\left(\hat{\omega}_{f u, I}+\hat{\omega}_{f u, h}\right)($ filled circle $)>\omega_{f u}($ open circle) corresponding to $\bar{f}>f_{\text {stoich }}$.
(6) Likewise, $\bar{\omega}_{o x}=0.5\left(\hat{\omega}_{o x, I}+\hat{\omega}_{o x, h}\right)>\omega_{o x}$ (which is zero) corresponding to $\bar{f}>f_{\text {stoich }}$.
(6) $\bar{T}=0.5\left(\hat{T}_{l}+\hat{T}_{h}\right)<\mathrm{T}$ corresponding to $\bar{f}>f_{\text {stoich }}$.
(3) The above observations will also apply when $\bar{f}<f_{\text {stoich }}$. Thus, in general, finite amounts of fuel and oxidant are found when $\bar{f}=f_{\text {stoich }}$
(B) If $f_{\text {stoich }}$ does not lie between \hat{f}_{l} and \hat{f}_{h} then $\bar{T}, \bar{\omega}_{\text {ox }}$ and $\bar{\omega}_{f u}$ will of course correspond to \bar{f}.

Prediction of L_{f} and $r_{f}(\mathbf{x})-4-\operatorname{L42}\left(\frac{17}{19}\right)$

The flame zone will be a finite volume enclosed by the $\hat{f}_{l}=\bar{f}-f^{\prime}=f_{\text {stoich }}$ (inner) and $\hat{f}_{h}=\bar{f}+f^{\prime}=f_{\text {stoich }}$ (outer) surfaces. The $\bar{f}=f_{\text {stoich }}$ surface will lie between the two surfaces.

Prediction of L_{f} and $r_{f}(\mathbf{x})-5-\operatorname{L42}\left(\frac{18}{19}\right)$

 Thus$$
\begin{aligned}
\frac{r_{f, \text { out }}}{x} & =\left[\frac{1}{57.6}\left\{\sqrt{\left(\frac{6.57}{f_{\text {stoich }}-f^{\prime}}\right)\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)}-1\right\}\right]^{0.5} \\
\frac{r_{f, \text { in }}}{x} & =\left[\frac{1}{57.6}\left\{\left(\sqrt{\left.\frac{6.57}{f_{\text {stoich }}+f^{\prime}}\right)\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)}-1\right\}\right]^{0.5}\right. \\
\frac{r_{, \text {stoich }}}{x} & =\left[\frac{1}{57.6}\left\{\sqrt{\left(\frac{6.57}{f_{\text {stoich }}}\right)\left(\frac{D}{x}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)}-1\right\}\right]^{0.5} .
\end{aligned}
$$

where f^{\prime} is estimated from

$$
\begin{aligned}
f^{\prime} & \simeq I_{m} \times\left|\frac{\partial \bar{f}}{\partial r}\right|_{\text {stoich }}=\left(0.1875 \times r_{1 / 2}\right) \times\left|\frac{\partial \bar{f}}{\partial r}\right|_{\text {stoich }} \\
& =24.07\left(\frac{\rho_{0}}{\rho_{m}}\right)\left(\frac{D}{x}\right)\left(\frac{r_{f, \text { stoich }}}{x}\right)\left[1+57.6\left(\frac{r_{f, \text { stoich }}}{x}\right)^{2}\right]^{-3}
\end{aligned}
$$

Prediction of L_{f} and $r_{f}(\mathbf{x})-6-\operatorname{L42}\left(\frac{19}{19}\right)$

 Setting $r_{\text {fin,out,stoich }}=0, x=L_{f}$ can be estimated from$$
\begin{aligned}
\frac{L_{f, \text { out }}}{D} & =\frac{6.57}{f_{\text {stoich }}-f^{\prime}}\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{L_{f, \text { in }}}{D} & =\frac{6.57}{f_{\text {stoich }}+f^{\prime}}\left(\frac{\rho_{0}}{\rho_{m}}\right) \\
\frac{L_{f, \text { stoich }}}{D} & =\frac{6.57}{f_{\text {stoich }}}\left(\frac{\rho_{0}}{\rho_{m}}\right)=6.57\left(1+R_{\text {st }}\right)\left(\frac{\rho_{0}}{\rho_{m}}\right)
\end{aligned}
$$

Thus, if $L_{f, \text { stoich }}$ is regarded as the mean flame length then, knowing $f_{\text {stoich }}=\left(1+R_{s t}\right)^{-1}$, the flame length can be estimated for any fuel. Although the above relations are only approximate, they do embody the form of the experimentally determined empirical correlations

$$
L_{f, e x p}=F\left(D, R_{s t}, \frac{\rho_{0}}{\rho_{\infty}}, \frac{\rho_{0}}{\rho_{m}}\right) \rightarrow \frac{\rho_{0}}{\rho_{\infty}} \simeq \frac{\rho_{f u}}{\rho_{\infty}} \text { in most cases }
$$

