ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-40 CONV M T - REYNOLDS FLOW MODEL - 2

LECTURE-40 CONV M T REYNOLDS FLOW MODEL - 2

(1) Condensation
(2) Transpiration Cooling
(3) Volatile Fuel Burning
(4) Drying
(5) Solid Dissolution in Liquid

Condensation - L40($\frac{1}{15}$)

Prob: Consider condensation

 of steam at 1 atm on the outside of a Copper tube (2.5 cm ID and 2.9 cm OD). The tube carries cooling water at $50^{\circ} \mathrm{C}$ Calculate steam condensation rate when (a) steam is pure and saturated and (b) steam is mixed with 20% air by massAssume condensate film thickness $\delta=0.125 \mathrm{~mm}$,
$k_{c u}=300 \mathrm{~W} / \mathrm{m}-\mathrm{K}$,
$k_{\text {water }}=0.68 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
$h_{c o f, i}=4620 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$,
$\lambda_{\text {ref }}=2257 \mathrm{~kJ} / \mathrm{kg}$ and $T_{\text {ref }}=T_{w}$

CONDENSATE
FILM

$h_{c o f, o}=115 \mathrm{~W} / m^{2}-\mathrm{K}$
(single phase)

Theory of Condensation - L40($\frac{2}{15}$)

 Here$$
B=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}+q_{l} / N_{w}}=\frac{N_{w}}{g}
$$

If we take $T_{\text {ref }}=T_{w}$ then $h_{T L}=0, h_{m, w}=\lambda_{\text {ref }} \times \omega_{v, w}$ and $h_{m, \infty}=c_{p m}\left(T_{\infty}-T_{w}\right)+\lambda_{\text {ref }} \omega_{v, \infty}$. Substitution gives

$$
N_{w}=\frac{q_{l}}{c_{p m}\left(T_{\infty}-T_{w}\right) / B-\lambda_{\text {ref }}}=g \times B
$$

But, from Heat Transfer Theory, $q_{l}=h_{\text {cond }}\left(T_{w}-T_{s}\right)$ and for pure steam, $\mathbf{B}=\left(1-\omega_{v, w}\right) /\left(\omega_{v, w}-1\right)=-1$. Hence,

$$
N_{w}=\frac{-h_{\text {cond }}\left(T_{w}-T_{s}\right)}{c_{p m}\left(T_{w}-T_{\infty}\right)+\lambda_{\text {ref }}}=-g
$$

Thus, our mass transfer formula accords with the heat transfer formula with $h_{\text {cond }}=$ condensation heat transfer coef,

Soln - 1 - L40 $\left(\frac{3}{15}\right)$

Soln: part (a) In our problem, T_{s} (outside tube wall temp)
is not known but cooling water temperature T_{c} is known.
Therefore, we invoke the notion of total heat transfer coef (U) and write $\left(T_{w}-T_{c}\right)=q_{l} / U$ where

$$
\frac{1}{U}=\frac{1}{h_{c o f, i}}+\frac{r_{i}}{k_{c u}} \ln \left(1+\frac{r_{o}-r_{i}}{r_{i}}\right)+\frac{r_{i}}{k_{l}} \ln \left(1+\frac{\delta}{r_{o}}\right)
$$

Substitution gives $U=2663 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. For pure steam, at $p=1 \mathrm{~atm}, T_{w}=T_{\infty}=T_{\text {sat }}=100^{\circ} \mathrm{C}$ and
$-N_{w}=\mathrm{g}=h_{\text {cof }, o} / c p_{v}=115 /\left(1.88 \times 10^{3}\right)=0.06117 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$.
But, from our model

$$
-N_{w}=\frac{2663(100-50)}{1880(100-100)+2257 \times 10^{3}}=0.059 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}
$$

The two results are very close. Negative sign indicates condensation.

Soln - 2 - L40 ($\frac{4}{15}$)

Soln: Part (b) For 20\% air in steam, $\omega_{v, \infty}=0.8$ and $q_{l}=U\left(T_{w}-50\right)$ but T_{w} is not known. Thus,

$$
N_{w}=\frac{2663\left(T_{w}-50\right)}{c_{p, m}\left(100-T_{w}\right) / B-\lambda_{\text {ref }}}=\left(\frac{h_{c o f, o}}{c_{p m}}\right) \times \ln (1+B)
$$

where $\mathrm{B}, \lambda_{\text {ref }}$ and $c_{p m}$ are functions of T_{w}. Hence, we need trial-and-error solution.

T_{w}	$\omega_{v, w}$	B	$C_{p m}$	$\lambda_{\text {ref }}$	LHS	RHS
90	0.5933	-0.5082	1614	2283.2 e 3	-0.046	-0.050
91	0.627	-0.4637	1629	2280.6 e 3	-0.0472	-0.044
90.5	0.6094	-0.488	1621	2282.0 e 3	-0.0475	-0.047

We accept the last soln $N_{w} \simeq-0.0473 \mathrm{~kg} / \mathrm{m}^{2}$-s (Ans b) Compared to pure steam, in the presence of air, B, N_{w} and T_{w} are reduced.

Transpiration Cooling - L40($\frac{5}{15}$)

Prob: A porous metal surface is swept by air at $540^{\circ} \mathrm{C}$. Since the metal oxidises at $425^{\circ} \mathrm{C}$, it is decided to keep the surface temperature down to $370^{\circ} \mathrm{C}$ by blowing gases through the pores. For this purpose, 3 candidate gases at $35^{\circ} \mathrm{C}$ are considered: (a) Air, (b) He and (c) H_{2}. Calculate supply rate of each gas assuming operating $\mathrm{g}=370 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{hr}$.

Soln: Part (a) In case of air, assuming const sp heat

$$
B=\frac{h_{\infty}-h_{w}}{h_{w}-h_{T}}=\frac{c_{p}\left(T_{\infty}-T_{w}\right)}{c_{p}\left(T_{w}-T_{T}\right)}=\frac{540-370}{370-35}=0.5074
$$

Hence, $N_{w, a}=g \times B=187.75 \mathrm{~kg} / m^{2}-\mathrm{hr}$ (Ans).

Soln (Contd) - 1-L40($\frac{6}{15}$)

Soln: Part (b) In this case, ($c_{p, H e}=5.25 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $\left.c_{p, \mathrm{a}, \infty}=1.1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\right)$ and taking $T_{\text {ref }}=T_{w}$

$$
\begin{aligned}
B & =\frac{c_{p, a}\left(T_{\infty}-T_{\text {ref }}\right)-c_{p, m}\left(T_{w}-T_{\text {ref }}\right)}{c_{p, m}\left(T_{w}-T_{\text {ref }}\right)-c_{p, H e}\left(T_{T}-T_{\text {ref }}\right)} \\
& =\frac{c_{p, a}\left(T_{\infty}-T_{\text {ref }}\right)}{-c_{p, H e}\left(T_{T}-T_{\text {ref }}\right)} \\
& =\frac{1.1(540-370)}{-5.25(35-370)}=0.1063
\end{aligned}
$$

Hence, $N_{w, H e}=g \times B=39.34 \mathrm{~kg} / m^{2}-\mathrm{hr}$ (Ans).

Soln (Contd) - 2 - L40 $\left(\frac{7}{15}\right)$

Soln: Part (c) In this case ($c_{p, H_{2}}=14.5 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$), we assume an (SCR $H_{2}+0.5 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$) giving $r_{s t}=16 / 2=8$ with $\Delta H_{c}=118.4 \mathrm{MJ} / \mathrm{kg}$. Then, taking
$h=c_{p, m}\left(T-T_{\text {ref }}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2}}$ and $T_{\text {ref }}=T_{w}$, we have

$$
\begin{aligned}
B & =\frac{c_{p, a, \infty}\left(T_{\infty}-T_{w}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2, \infty}}}{-c_{p, H_{2}}\left(T_{T}-T_{w}\right)} \\
& =\frac{1.1(540-370)+\left(118.4 \times 10^{3} / 8\right) 0.232}{-14.5(35-370)}=0.745
\end{aligned}
$$

Hence, $N_{w, H_{2}}=g \times B=275.8 \mathrm{~kg} / m^{2}-\mathrm{hr}$ (Ans).
Thus, $N_{w, H_{2}}>N_{w, \text { air }}>N_{w, H e}$.

Missile Cooling - L40($\frac{8}{15}$)

Prob: Consider axi-symmetric stagnation point of a missile traveling at $5500 \mathrm{~m} / \mathrm{s}$ through air where static temperature is $\simeq 0 \mathrm{~K}$. It is desired to maintain the surface temperature at $1200^{\circ} \mathrm{C}$ by transpiration of H_{2} at $38^{\circ} \mathrm{C}$. Evaluate B and N_{w}. Given: $g^{*}=0.467 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$.

Soln: Here, we account for KE contribution and define $h_{m}=c_{p, m}\left(T-T_{\text {ref }}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2}}+V^{2} / 2000 \mathrm{~kJ} / \mathrm{kg}$. Taking $T_{\text {ref }}=T_{w}$ so that $h_{m, w}=0$,

$$
\begin{aligned}
B & =\frac{c_{p, a, \infty}\left(T_{\infty}-T_{w}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2, \infty}}+V_{\infty}^{2} / 2000}{-c_{p, H_{2}}\left(T_{T}-T_{w}\right)} \\
& =\frac{1.1(0-1473)+\left(118.4 \times 10^{3} / 8\right) 0.232+5500^{2} / 2000}{-14.5(38-1200)}
\end{aligned}
$$

$$
=1.0053 \rightarrow N_{w}=g^{*} \ln (1+B)=0.325 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}-s} \text { (Ans) }
$$

Burning of a Volatile Fuel - L40($\frac{9}{15}$)

Prob: In a Diesel engine, liquid fuel ($C_{12} H_{26}, \Delta H_{c}=44 \mathrm{MJ} / \mathrm{kg}$, sp. gr. $=0.854, h_{f g}=358 \mathrm{~kJ} / \mathrm{kg}$ and $\left.T_{b p}=425^{\circ} \mathrm{C}\right)$ is injected in the form of small droplets. After ignition delay, part of the fuel vapourises and burns abruptly and the remainder burns as fast as the fuel vapourises. Estimate burning time of a $5 \mu \mathrm{~m}$ droplet. Given: Cylinder Temp $=800^{\circ} \mathrm{C}, k_{f u}=0.0463 \mathrm{~W} / \mathrm{m}-\mathrm{K}$.

Soln: From stoichiometry, $r_{s t}=18.5 \times 32 / 170=3.482$. We define $h_{m}=c_{p, m}\left(T-T_{\text {ref }}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2}}$. Assuming droplet at $T_{\text {ref }}=T_{b p}=T_{w}=T_{T}$, so that $h_{m, w}=h_{T L}=q_{l}=0$, $\omega_{O_{2}, w}=0$ and $q_{w}=N_{w}\left(h_{T w}-h_{T L}\right)=N_{w} h_{f g}$ we have

$$
\begin{aligned}
B & =\frac{h_{m, \infty}-0}{0-0+h_{f g}}=\frac{c_{p, \infty}\left(T_{\infty}-T_{b p}\right)+\left(\Delta H_{c} / r_{s t}\right) \omega_{O_{2, \infty}}}{h_{f g}} \\
& =\frac{1.15(800-425)+\left(44 \times 10^{3} / 3.482\right) 0.232}{358}=9.394
\end{aligned}
$$

Soln (Contd.) - L40($\frac{10}{15}$)

Since B is large, the instantaneous burning rate and burning time are given by

$$
\dot{m}=\left(\frac{\Gamma_{h}}{r_{w}}\right) 4 \pi r_{w}^{2} \ln (1+B) \quad \rightarrow \quad t_{\text {burn }}=\frac{\rho_{l} D_{w i}^{2}}{8 \Gamma_{h} \ln (1+B)}
$$

At $800^{\circ} \mathrm{C}, k_{a}=0.075 \mathrm{~W} / \mathrm{m}-\mathrm{k}$. Therefore, $k_{m}=0.4 \times k_{f u}+0.6 \times k_{a}=0.06353 \mathrm{~W} / \mathrm{m}-\mathrm{K}$.
Taking $c_{p m}=1.2 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \Gamma_{h}=0.06353 / 1200=5.29 \times 10^{-5}$ $\mathrm{kg} / \mathrm{m}-\mathrm{s}$. Also, $\rho_{l}=\mathrm{sp} . \mathrm{gr} . \times 1000=853 \mathrm{~kg} / \mathrm{m}^{3}$. Hence

$$
t_{\text {burn }}=\frac{853 \times\left(5 \times 10^{-6}\right)^{2}}{8 \times 5.29 \times 10^{-5} \ln (1+9.394)}=2.15 \times 10^{-5} \mathrm{~s}
$$

or, $t_{\text {burn }}=0.0215 \mathrm{~ms}$ (Ans)

Drying - L40($\frac{11}{15}$)

Prob: In a laundry dryer, dry air is available at 1 bar and $20^{\circ} \mathrm{C}$. The air is mixed with superheated steam at 1 bar and $250^{\circ} \mathrm{C}$. Examine effect of mixing in the range $0 \leq \omega_{\mathrm{V}, \infty} \leq 0.5$. Assume g is unchanged with change in $\omega_{v, \infty}$.

Soln: For superheated steam, $h_{v, \infty}=2974.3 \mathrm{~kJ} / \mathrm{kg}$. There will be adiabatic conditions at the drying surface ($q_{l}=0$). Hence

$$
\begin{aligned}
B & =\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}} \\
h_{m, \infty} & =1.005 \times 20 \times\left(1-\omega_{v, \infty}\right)+2974.3 \omega_{v, \infty} \\
h_{m, w} & =1.005 T_{w}+\left\{(1.88-1.001) T_{w}+2503\right\} \omega_{v, w} \\
h_{T L} & =4.187 \times T_{w}
\end{aligned}
$$

where T_{w} and $\omega_{v, w}$ are related by equilibrium relation given in lecture 37. Iterative solutions on next slide.

Soln (Contd.) - 1 - L40($\frac{12}{15}$)

$\omega_{V, \infty}$	$T_{w}^{0} \mathrm{C}$	$\omega_{v, w}$	$B_{m}=B_{h}$
0.0	6.07	0.0059	0.0056
0.01	17.571	0.0127	0.00274
0.03	32.189	0.0302	0.00018
0.05	-	-	$\rightarrow 0$
0.08	50.267	0.0808	0.0009
0.10	54.745	0.102	0.00225
0.20	69.18	0.210	0.0122
0.30	77.7	0.317	0.0224
0.40	83.485	0.422	0.0379
0.50	87.85	0.525	0.0517

The drying rate is non-linear at small fraction $\omega_{\mathrm{V}, \infty}$. It is difficult to balance B_{m} and B_{h} at $\omega_{v, \infty}=0.05$ because $B \rightarrow 0$. Compared to dry air, drying rate improves monotonically for $0.2 \leq \omega_{v, \infty} \leq 0.5$.

Dissolution of Solid - L40($\frac{13}{15}$)

Prob: A thin plate ($15 \mathrm{~cm} \times 15 \mathrm{~cm}$) of solid salt is dragged through sea-water (edgewise) at $20^{\circ} \mathrm{C}$ with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Sea water has salt concentration of 3% by weight. Saturated salt solution in water has concentration of $30 \mathrm{gms} / 100 \mathrm{gms}$ of water at $20^{\circ} \mathrm{C}$. (a) Assuming transition criterion of Fraser \& Milne, determine if transition will occur and (b) estimate the rate at which salt goes into solution Take $\mathrm{Sc}=745, \nu_{\text {water }}=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, Salt sp gr. $=2.163$.

Soln: Part (a) For $m=0, \delta_{2}^{*}=0.645 R e_{x}^{-0.5}$ and from FM, transition criterion is $\operatorname{Re}_{\delta_{2}}=163+\exp (6.91)=1165.2$. Combining, we get $R e_{x, \text { tr }}=3.08 \times 10^{6}$ or with $U_{\infty}=5 \mathrm{~m} / \mathrm{s}$, $x_{t r}=61.6 \mathrm{~cm}>15 \mathrm{~cm}$.
Hence transition will not occur. (Ans)

Soln (Contd) - L40 ($\frac{14}{15}$)

Soln: Part (b) In this problem, $\omega_{\infty}=0.03$,
$\omega_{w}=36 / 136=0.2647$ and $\omega_{T}=1.0$.
Hence, $B=(0.03-0.2647) /(0.2647-1)=0.3192$
Now, $R e_{\text {plate }}=5 \times 0.15 / 10^{-6}=7.5 \times 10^{5}$. Therefore, $\mathrm{Sh}=g^{*} L /\left(\rho_{m} D\right)=0.664 \operatorname{Re}_{L}^{0.5} S c^{0.33}=5099.3$.
But, $\rho_{m}=\rho_{\text {water }}\left(1-\omega_{\text {mean }}\right)+\omega_{\text {mean }} \rho_{\text {salt }}$ where $\omega_{\text {mean }}=0.5(0.03+0.2647)=0.147$. Hence, $\rho_{m}=1169.2$.

Therefore, $g^{*}=192 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{hr}$ Hence, $N_{w}=g^{*} \ln (1+B)=53.2 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{hr}$ and Mass loss from 2 sides $=53.2 \times 2 \times 0.15^{2}=2.394 \mathrm{~kg} / \mathrm{hr}($ Ans)

Summary - L40($\frac{15}{15}$)

(1) This completes duscussion of Convective Mass Transfer
(2) We have shown that the algebraic Reynolds flow model with property corrections is a good proxy for the Boundary Layer model because mass transfer coefficient is evaluated from $h_{\text {cof }, v_{w}=0}$ for the corresponding heat transfer situation. This feature obviates the need for solving complete set of differential BL equations.
(3) The 1D Stefan flow model provides reliable solutions in diffusion mass transfer. The 1D Couette flow model , though very approximate, provides means for estimating effect of property variations in a boundary layer.
(9) In the remaining lectures, we shall consider 2 special topics of (a) Natural Convection BLs, and (b) Laminar and Turbulent Diffusion Flames

