ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-4 SCALAR TRANSPORT EQUATIONS

LECTURE-4 SCALAR TRANSPORT EQUATIONS

- Law of Mass Conservation for a Specie in a Mixture (Mass Transfer Equation)
(2) 1st Law of Thermodynamics
(Energy Equation)

Mass Transfer Equation - L4($\left.\frac{1}{17}\right)$

For Specie k in a Mixture Rate of accumulation of mass $\left(\dot{M}_{k, a c}\right)=$
Rate of mass in $\left(\dot{M}_{k, \text { in }}\right)$

- Rate of mass out ($\dot{M}_{k, \text { out }}$)
+ Rate of generation within
CV ($R_{k, c v}$)
$\dot{M}_{k, a c}=\frac{\partial\left(\rho_{k} \Delta V\right)}{\partial t}$
$\dot{M}_{k, i n}=\left.N_{1, k} \Delta A_{1}\right|_{x_{1}}+$
$\left.N_{2, k} \Delta A_{2}\right|_{x_{2}}+\left.N_{3, k} \Delta A_{3}\right|_{x_{3}}$
$\dot{M}_{k, \text { out }}=\left.N_{1, k} \Delta A_{1}\right|_{x_{1}+\Delta x_{1}}$
$+\left.N_{2, k} \Delta A_{2}\right|_{x_{2}+\Delta x_{2}}+$
$\left.N_{3, k} \Delta A_{3}\right|_{x_{3}+\Delta x_{3}}$

$$
\begin{aligned}
\mathbf{N} & =\text { TOTAL MASS FLUXES } \\
\mathbf{q} & =\text { TOTAL HEAT FLUXES }
\end{aligned}
$$

$\rho_{k}=$ Specie Density
Substitute, Divide each term by
ΔV and Let $\Delta x_{1}, \Delta x_{2}, \Delta x_{3} \rightarrow 0$

Mass Transfer Equation - I L4($\frac{2}{17}$)

$$
\begin{equation*}
\frac{\partial\left(\rho_{k}\right)}{\partial t}+\frac{\partial\left(N_{1, k}\right)}{\partial x_{1}}+\frac{\partial\left(N_{2, k}\right)}{\partial x_{2}}+\frac{\partial\left(N_{3, k}\right)}{\partial x_{3}}=R_{k} \tag{1}
\end{equation*}
$$

Now, the total mass transfer flux $N_{i, k}$ in direction i is the sum of Convective Flux ($\rho_{k} u_{i}$) due to bulk fluid motion and Diffusion Flux ($m_{i, k}^{\prime \prime}$) due to density difference. Thus,

$$
\begin{equation*}
N_{i, k}=\rho_{k} u_{i}+m_{i, k}^{\prime \prime} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{i, k}^{\prime \prime}=-D \frac{\partial \rho_{k}}{\partial x_{i}} \tag{3}
\end{equation*}
$$

where $\mathrm{D}\left(\mathrm{m}^{2} / \mathrm{s}\right)$ is the mass-diffusivity

Mass Transfer Equation - II L4($\left.\frac{3}{17}\right)$

Substituting for $N_{i, k}$ gives

$$
\begin{align*}
& \frac{\partial\left(\rho_{k}\right)}{\partial t}+\frac{\partial\left(\rho_{k} u_{1}\right)}{\partial x_{1}}+\frac{\partial\left(\rho_{k} u_{2}\right)}{\partial x_{2}}+\frac{\partial\left(\rho_{k} u_{3}\right)}{\partial x_{3}} \\
= & \frac{\partial}{\partial x_{1}}\left(D \frac{\partial \rho_{k}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(D \frac{\partial \rho_{k}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}}\left(D \frac{\partial \rho_{k}}{\partial x_{3}}\right)+R_{k} \tag{4}
\end{align*}
$$

Define Mass Fraction ω_{k}

$$
\begin{equation*}
\omega_{k}=\frac{\rho_{k}}{\rho_{m}} \sum_{\text {all species }} \omega_{k}=1 \text { and } \sum \rho_{k}=\rho_{m} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial\left(\rho_{m} \omega_{k}\right)}{\partial t}+\frac{\partial\left(\rho_{m} u_{j} \omega_{k}\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\rho_{m} D \frac{\partial \omega_{k}}{\partial x_{j}}\right)+R_{k} \tag{6}
\end{equation*}
$$

Summation gives Bulk Mass Conservation because $\sum \omega_{k}=1$ and hence, $\sum R_{k}=0$. Also, $\sum N_{i, k}=\rho_{m} u_{i}+\sum \dot{m}_{i, k}^{\prime \prime}=\rho_{m} u_{i \underline{i}}$

Mass Diffusivity L4($\frac{4}{17}$)

(1) The mass diffusivity is defined only for a Binary Mixture of two fluids 1 and 2 as D_{12}.
(2) In Multicomponent Gaseous Mixtures, however, diffusivities for pairs of species are nearly equal and a single symbol D suffices for all species.
(3) Incidentally, in turbulent flows, this assumption of equal (effective) diffusivities holds even greater validity as will be shown later

1st Law of Thermodynamics L4($\left.\frac{5}{17}\right)$

In Rate Form (W / m ${ }^{3}$), the 1st Law of Thermodynamics reads as

$$
\begin{equation*}
\dot{E}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {cond }}+\dot{Q}_{\text {gen }}-\dot{W}_{s}-\dot{W}_{b} \tag{7}
\end{equation*}
$$

where
$\dot{E}=$ Rate of Change of Energy of the CV
$\dot{Q}_{\text {conv }}=$ Net Rate of Energy transferred by Convection
$\dot{Q}_{\text {cond }}=$ Net Rate of Energy transferred by Conduction
$\dot{Q}_{\text {gen }}=$ Net Rate of Volumetric Heat Generation within CV
$\dot{W}_{s}=$ Net Rate of Work Done by Surface Forces
$\dot{W}_{b}=$ Net Rate of Work Done by Body Forces
Each term will now be represented by a mathematical expression.

Rate of Change L4($\frac{6}{17}$)

$$
\begin{align*}
\dot{E} & =\frac{\partial\left(\rho_{m} e^{o}\right)}{\partial t} \tag{8}\\
e^{o} & =e_{m}+\frac{V^{2}}{2}=h_{m}-\frac{p}{\rho_{m}}+\frac{V^{2}}{2} \tag{9}
\end{align*}
$$

where
$e_{m}=$ Mixture Specific Energy (J / kg)
$h_{m}=$ Mixture Specific Enthalpy (J / kg)
$V^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}(\mathrm{~J} / \mathrm{kg})$
$\rho_{m}=\sum \rho_{k}=\operatorname{Mixture}$ Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Contributions to e^{0} from other forms (Potential, Electro-Magnetic etc) of energy are neglected.

Thermodynamic Convention L4($\left.\frac{7}{17}\right)$

Convention:
(1) Heat Flow into CV is Positive whereas Heat Flow out of CV is Negative.
(2) Also, all species are transported at Mixture Velocity

$$
\begin{aligned}
\mathbf{N} & =\text { TOTAL MASS FLUXES } \\
\mathbf{q} & =\text { TOTAL HEAT FLUXES }
\end{aligned}
$$

Net Convection L4($\left.\frac{8}{17}\right)$

Since $\sum N_{i, k}=\rho_{m} u_{i}$
$\dot{Q}_{\text {conv }}=-\frac{\partial \sum\left(N_{j, k} e_{k}^{o}\right)}{\partial x_{j}}=-\frac{\partial}{\partial x_{j}}\left[\left(\sum N_{j, k} h_{k}\right)+\rho_{m} u_{j}\left(-\frac{p}{\rho_{m}}+\frac{V^{2}}{2}\right)\right]$
Now, following definition of $N_{j, k}$ and noting $\sum \omega_{k} h_{k}=h_{m}$,

$$
\begin{align*}
\sum N_{j, k} h_{k} & =\sum\left(\rho_{m} u_{j} \omega_{k}+m_{j, k}^{\prime \prime}\right) h_{k} \\
& =\rho_{m} u_{j} h_{m}+\sum m_{j, k}^{\prime \prime} h_{k} \tag{11}
\end{align*}
$$

Hence, after some algebra

$$
\begin{equation*}
\dot{Q}_{\text {conv }}=-\frac{\partial\left(\rho_{m} u_{j} e^{o}\right)}{\partial x_{j}}-\frac{\partial\left(\sum m_{j, k}^{\prime \prime} h_{k}\right)}{\partial x_{j}} \tag{12}
\end{equation*}
$$

Net Conduction L4($\frac{9}{17}$)

Similarly, from Fourier's Law of Conduction

$$
\begin{equation*}
\dot{Q}_{\text {cond }}=-\frac{\partial q_{j}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[k_{m} \frac{\partial T}{\partial x_{j}}\right] \tag{13}
\end{equation*}
$$

where $k_{m}=$ Mixture Conductivity

Volumetric Generation L4($\left.\frac{10}{17}\right)$

$$
\begin{equation*}
\dot{Q}_{g e n}=\dot{Q}_{\text {chem }}+\dot{Q}_{\text {rad }} \tag{14}
\end{equation*}
$$

(1) The Chemical Energy is positive for exothermic reactions and negative for endothermic reactions .
(2) Evaluation of $\dot{Q}_{\text {chem }}$ depends on the chemical reaction model employed in a particular situation.
(3) The $\dot{Q}_{\text {rad }}$ term represents the Net Radiation Exchange between the CV and its surroundings. Evaluation of this term, in general, requires solution of integro-differential equations
(9) When absorptivity (a) and scattering coefficient (s) are large,

$$
\begin{equation*}
\dot{Q}_{\text {rad }}=\frac{\partial}{\partial x_{j}}\left[k_{\text {rad }} \frac{\partial T}{\partial x_{j}}\right] \quad k_{\text {rad }}=\frac{16 \sigma T^{3}}{a+s} \tag{15}
\end{equation*}
$$

where σ is the Stefan-Boltzmann constant

Work-Done by Forces-I L4($\frac{11}{17}$)

Convention: The work done on the CV is negative,

$$
\begin{align*}
-\dot{W}_{s} & =\frac{\partial}{\partial x_{1}}\left[\sigma_{1} u_{1}+\tau_{12} u_{2}+\tau_{13} u_{3}\right] \\
& +\frac{\partial}{\partial x_{2}}\left[\tau_{21} u_{1}+\sigma_{2} u_{2}+\tau_{23} u_{3}\right] \\
& +\frac{\partial}{\partial x_{3}}\left[\tau_{31} u_{1}+\tau_{32} u_{2}+\sigma_{3} u_{3}\right] \tag{16}\\
-\dot{W}_{b} & =\rho_{m}\left(B_{1} u_{1}+B_{2} u_{2}+B_{3} u_{3}\right) \tag{17}
\end{align*}
$$

where $\dot{W}_{s}=$ Stress Work and $\dot{W}_{b}=$ Body-Force Work Further use of differentiation of product gives (see next slide)

Work-Done by Forces-II L4($\frac{12}{17}$)

$$
\begin{align*}
-\left(\dot{W}_{s}+\dot{W}_{b}\right) & =u_{1}\left[\frac{\partial \sigma_{1}}{\partial x_{1}}+\frac{\partial \tau_{21}}{\partial x_{2}}+\frac{\partial \tau_{31}}{\partial x_{3}}+\rho_{m} B_{1}\right] \tag{18}\\
& =u_{2}\left[\frac{\partial \tau_{12}}{\partial x_{1}}+\frac{\partial \sigma_{2}}{\partial x_{2}}+\frac{\partial \tau_{32}}{\partial x_{3}}+\rho_{m} B_{2}\right] \tag{19}\\
& +u_{3}\left[\frac{\partial \tau_{13}}{\partial x_{1}}+\frac{\partial \tau_{23}}{\partial x_{2}}+\frac{\partial \sigma_{3}}{\partial x_{3}}+\rho_{m} B_{3}\right] \tag{20}\\
& +\sigma_{1} \frac{\partial u_{1}}{\partial x_{1}}+\sigma_{2} \frac{\partial u_{2}}{\partial x_{2}}+\sigma_{3} \frac{\partial u_{3}}{\partial x_{3}} \tag{21}\\
& +\tau_{12}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)+\tau_{13}\left(\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right) \\
& +\tau_{23}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right) \tag{22}
\end{align*}
$$

Complementary stress $\tau_{12}=\tau_{21}$ etc are recognised (see next slide)

Work-Done by Forces-III L4($\left.\frac{13}{17}\right)$

Multipliers of u_{1}, u_{2}, u_{3} in equations 18,19 and 20 are simply RHS of Momentum equations (See Lecture 3, slides 13-14-15). They are replaced by LHS of Momentum equations. Hence,

Equations 18, 19, $20=\rho_{m}\left[u_{1} \frac{D u_{1}}{D t}+u_{2} \frac{D u_{2}}{D t}+u_{3} \frac{D u_{3}}{D t}\right]$

$$
\begin{equation*}
=\rho_{m} \frac{D}{D t}\left(\frac{V^{2}}{2}\right) \tag{23}
\end{equation*}
$$

Work-Done by Forces-IV L4($\left.\frac{14}{17}\right)$

Similarly, using Stokes's Laws, equations 21, and 22 can be written as

$$
\begin{equation*}
\text { Equations 21, } 22=\mu \Phi_{v}-p \nabla . V \tag{24}
\end{equation*}
$$

where Viscous Dissipation Function is

$$
\begin{align*}
\Phi_{v} & =2\left[\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{3}}\right)^{2}\right] \\
& +\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}\right)^{2} \tag{25}
\end{align*}
$$

Work-Done by Forces-V L4($\frac{15}{17}$)

Hence, from equations 23 and 24, we have

$$
\begin{equation*}
-\left(\dot{W}_{s}+\dot{W}_{b}\right)=\rho_{m} \frac{D}{D t}\left(\frac{V^{2}}{2}\right)+\mu \Phi_{v}-p \nabla \cdot V \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla \cdot V=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}} \tag{27}
\end{equation*}
$$

Summary L4($\frac{16}{17}$)

$$
\begin{equation*}
\dot{E}=\dot{Q}_{\text {conv }}+\dot{Q}_{\text {cond }}+\dot{Q}_{\text {gen }}-\dot{W}_{s}-\dot{W}_{b} \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
\dot{E} & =\frac{\partial\left(\rho_{m} e^{0}\right)}{\partial t} \tag{29}\\
\dot{Q}_{\text {conv }} & =-\frac{\partial\left(\rho_{m} u_{j} e^{o}\right)}{\partial x_{j}}-\frac{\partial\left(\sum m_{j, k}^{\prime \prime} h_{k}\right)}{\partial x_{j}} \tag{30}\\
\dot{Q}_{\text {cond }} & =\frac{\partial}{\partial x_{j}}\left[k_{m} \frac{\partial T}{\partial x_{j}}\right] \tag{31}\\
\dot{Q}_{\text {gen }} & =\dot{Q}_{\text {chem }}+\dot{Q}_{\text {rad }} \tag{32}\\
-\left(\dot{W}_{s}+\dot{W}_{b}\right) & =\rho_{m} \frac{D}{D t}\left(\frac{V^{2}}{2}\right)+\mu \Phi_{v}-p \nabla \cdot V \tag{33}
\end{align*}
$$

Final Energy Equation L4($\left.\frac{17}{17}\right)$

$$
\begin{align*}
\frac{\partial\left(\rho_{m} e^{o}\right)}{\partial t}+\frac{\partial\left(\rho_{m} u_{j} e^{o}\right)}{\partial x_{j}} & =\frac{\partial}{\partial x_{j}}\left[k_{m} \frac{\partial T}{\partial x_{j}}\right]-\frac{\partial\left(\sum m_{j, k}^{\prime \prime} h_{k}\right)}{\partial x_{j}} \\
& +\frac{D}{D t}\left[\frac{V^{2}}{2}\right]-p \nabla \cdot V+\mu \Phi_{v} \\
& +\dot{Q}_{\text {chem }}+\dot{Q}_{\text {rad }} \tag{34}
\end{align*}
$$

or, using definition of e^{0},

$$
\begin{align*}
\rho_{m} \frac{D h}{D t} & =\frac{\partial}{\partial x_{j}}\left[k_{m} \frac{\partial T}{\partial x_{j}}\right]-\frac{\partial\left(\sum m_{j, k}^{\prime \prime} h_{k}\right)}{\partial x_{j}}+\mu \Phi_{v} \\
& +\frac{D p}{D t}+\dot{Q}_{\text {chem }}+\dot{Q}_{\mathrm{rad}} \tag{35}
\end{align*}
$$

