ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-39 CONV M T - REYNOLDS FLOW MODEL - 1

LECTURE-39 CONV M T REYNOLDS FLOW MODEL - 1

(1) Wet Bulb Thermometer
(2) Measurement of RH - Effect of Radiation
(3) Evaporation from a Porous Surface
(9) Evaporation from a Lake
(6) Humidification - Internal Flow

All problems require use of Psychrometry and/or steam tables

Wet Bulb Thermometer - L39($\frac{1}{16}$)

Prob: A wet bulb thermometer records $15^{\circ} \mathrm{C}$ when the dry bulb temperature is $27^{\circ} \mathrm{C}$. Calculate (a) RH of air and (b) compare with Carrier's correlation. Assume Le $=1$ and take $c_{p, v}=1.88 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $c_{p, a}=1.005$

Soln: Here, $T_{w}=15$ and $T_{\infty}=T_{d b}=27$. Since $\mathrm{Le}=1$,

$$
B_{m}=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-\omega_{v, T}}=B_{h}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}+q_{l} / N_{w}} \rightarrow q_{l}=0
$$

Taking $T_{\text {ref }}=0^{\circ} \mathrm{C}, \lambda_{\text {ref }}=2503 \mathrm{~kJ} / \mathrm{kg}$, and from Steam Tables, $\omega_{v, w}=0.01068$, we have

$$
\begin{aligned}
h_{m, \infty} & =1.005 \times 27+\{(1.88-1.005) \times 27+2503\} \omega_{v, \infty} \\
h_{m, w} & =15.075+\{0.875 \times 15+2503\} 0.01068=41.95 \\
h_{T L} & =c_{p, I} \times T_{w}=4.187 \times 15=62.805
\end{aligned}
$$

Soln (Contd) - L39($\frac{2}{16}$)

Therefore

$$
\frac{\omega_{v, \infty}-0.01068}{0.01068-1}=\frac{27.135+2526.2 \omega_{v, \infty}-41.95}{41.95-62.805}
$$

Solving, $\omega_{v, \infty}=0.005936$. Hence, $W_{\infty}=\omega /(1-\omega)=0.00594$ at $27^{\circ} \mathrm{C}$. From psychrometric chart, this value corresponds to RH $=27 \%$ (Ans a). Also, $B_{m}=B_{h}=0.00479$ (Very small).

Carrier's correlation is

$$
p_{v, \infty}=p_{s a t, w}-\frac{\left(p_{t o t}-p_{s a t, w}\right)\left(T_{w b}-T_{d b}\right)}{1555-T_{w b}} \rightarrow\left(T^{0} C\right)
$$

where $p_{\text {tot }}=1 \mathrm{bar}, W_{w}=0.01068 /(1-0.01068)=0.0108$ and $p_{\text {sat }, w}=W_{w} \times p_{\text {tot }} / 0.622=0.01736$ bar. Hence, substitution gives $p_{v, \infty}=0.0097$. Therefore

$$
\omega_{v, \infty}=\frac{p_{v, \infty}}{1.61 \times p_{\text {tot }}-0.61 \times p_{v, \infty}}=0.00604 \quad(\text { Ans b })
$$

Measurement of RH - L39 $\left(\frac{3}{16}\right)$

Prob: Moist air flows through a duct whose walls are maintained at $50^{\circ} \mathrm{C}$. Dry and wet bulb thermometers placed in the duct record $70^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ respectively. Between thermometer bulb and air, $h_{\text {cof }}=17.5 \mathrm{~W} / \mathrm{m}^{2}$-K. Calculate RH of air (a) without radiation and (b) with radiation .

Soln: Part (a) Here, again $W_{w}=0.02, \omega_{v, w}=0.0196$, $h_{m, w}=74.61, h_{T L}=105.7$ and $h_{m, \infty}=70.35+2564.25 \omega_{V, \infty}$. Therfore, with $q_{l}=0$, equating B_{m} and B_{h},

$$
\frac{\omega_{v, \infty}-0.0196}{0.0196-1}=\frac{70.35+2564.25 \omega_{v, \infty}-74.61}{74.61-104.675}
$$

Solving $\omega_{v, \infty}=0.001446(B=0.0185)$. Therefore, $p_{v, \infty}=0.002328$ bar. But, from steam tables, $p_{V, \text { sat }}\left(T_{\infty}=70^{\circ} \mathrm{C}\right)=0.3119$ bar.
Hence, RH = $0.002328 / 0.3119=0.746 \%$ (Ans).

Soln (Contd) - 1 - L39 ($\frac{4}{16}$)
Soln: Part (b) Here, $q_{l}=0$ and $h_{T L}=h_{T}+q_{\text {rad }} / N_{w}$.

$$
B_{m h}=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-\omega_{v, T}}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T}}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}+q_{r a d} / N_{w}}
$$

Now, we determine true air temperature ($T_{a, \text { true }}$) allowing for radiation effects. Thus

$$
\begin{aligned}
h_{\text {cof }}\left(T_{a, \text { true }}-T_{\text {db }}\right) & =\sigma\left(T_{d b}^{4}-T_{w}^{4}\right) \\
17.5\left(T_{a, \text { true }}-343\right) & =5.67 \times 10^{-8}\left(343^{4}-323^{4}\right) \text { or } \\
T_{a, \text { true }} & =352.6 \mathrm{~K}=79.6^{0} \mathrm{C} \text { and } \\
q_{\text {rad }} & =\sigma\left(T_{w}^{4}-T_{w b}^{4}\right) \\
& =5.67 \times 10^{-8}\left(323^{4}-298^{4}\right)=170 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Now, B_{m} and B_{h} are freshly evaluated (next slide)

Soln (Contd) - 2 - L39 ($\frac{5}{16}$)

Here, we take $T_{\text {ref }}=T_{w b}=25$ so that $\lambda_{\text {ref }}=2442.3 \mathrm{~kJ} / \mathrm{kg}$.

$$
\begin{aligned}
h_{m, \infty} & =c_{p, a}\left(T_{a, t r u e}-T_{r e f}\right) \\
& +\left[\left(c_{p, v}-c_{p, a}\right)\left(T_{a, t r u e}-T_{\text {ref }}\right)+\lambda_{\text {ref }}\right] \omega_{v, \infty} \mathrm{~kJ} / \mathrm{kg} \\
& =54.52+2490 \omega_{v, \infty} \\
h_{m, w} & =\omega_{v, w} \lambda_{\text {ref }}=0.0196 \times 2442.3=47.87 \mathrm{~kJ} / \mathrm{kg} \\
h_{T L} & =c p_{l}\left(T_{w b}-T_{\text {ref }}\right)=0 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Also $\omega_{\text {mean }} \simeq 0.5(0.0196+0.001446)=0.0105$.
Therefore, $c_{p, m}=1.041 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
Hence, $g^{*}=h_{c o f} / c_{p m}=17.5 / 1041=0.01725 \mathrm{~kg} / m^{2}-\mathrm{s}$.
Now, since B is expected to be small,
we take $\left(q_{\mathrm{rad}} / N_{w}\right)=q_{\mathrm{rad}} /\left(g^{*} B\right)$, so that

$$
B=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-\omega_{v, T}}=\frac{h_{m, \infty}-h_{m, w}-\left(q_{r a d} / g^{*}\right)}{h_{m, w}-h_{T L}}
$$

Soln (Contd) - 3 - L39 ($\frac{6}{16}$)

Substitutions give $\left(q_{\text {rad }} / g^{*}\right)=0.17 / 0.01725=9.885 \mathrm{~kJ} / \mathrm{kg}$. Hence

$$
B=\frac{\omega_{v, \infty}-0.0196}{0.0196-1}=\frac{54.52+2490 \omega_{v, \infty}-47.87-9.885}{47.85-0}
$$

This gives $\omega_{v, \infty}=0.001693$ and $B=0.01826$.
So, our assumption of small B is verified.
Thus, $W_{\infty}=0.001648$ and $p_{v, \infty}=0.00264$ bar.
But, $p_{v, s a t}\left(T_{\infty}=79.58^{\circ} \mathrm{C}\right)=0.4739$ bar.
Hence RH $=0.00264 / 0.4739=0.557 \%$ (Ans).
This shows that true RH is lower than that predicted by neglecting effect of radiation

Evaporation - High B - L39($\left.\frac{7}{16}\right)$

Prob: Air at 1 bar, $27^{\circ} \mathrm{C}$ and 90% RH flows over a porous flat surface which is kept wet by supplying water. The plate temperature is maintained at $82.5^{\circ} \mathrm{C}$ by supplying heat to it from the rear side. Calculate (a) Evaporation rate and (b) Heat flux to be supplied. Given: $U_{\infty}=3.0 \mathrm{~m} / \mathrm{s}$, Length $\mathrm{L}=0.33 \mathrm{~m}$ and Width $\mathrm{W}=1 \mathrm{~m}$. Take $\mathrm{k}=0.025 \frac{\mathrm{~W}}{\mathrm{~m}-\mathrm{K}}$, $\rho_{m}=1.37 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \mathrm{D}=0.162 \frac{\mathrm{~m}^{2}}{h r}, \alpha=0.153 \frac{\mathrm{~m}^{2}}{h r}$ and $\nu=0.103 \frac{\mathrm{~m}^{2}}{h r}$

Soln: In this case,
$R e_{L}=3 \times 0.33 /(0.103 / 3600)=34601.9<3 \times 10^{5}$.
Thus, we have a laminar BL. Also, $\operatorname{Pr}=0.103 / 0.153=0.673$ and $\mathrm{Sc}=0.103 / 0.162=0.636$.
Hence, St $=0.664 \times \operatorname{Re}_{L}^{-0.5} \times \operatorname{Pr}^{-0.67}=0.00465$.
Therfore, $g^{*}=h_{\text {cof }} / c p_{m}=\rho_{m} U_{\infty} S t=1.37 \times 3.0 \times 0.00465$ $=0.0191 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$.

Soln (Contd.) - 1 - L39 $\frac{8}{16}$)

Now, $p_{v, \infty}=0.9 \times p_{\text {sat }}\left(27^{0} \mathrm{C}\right)=0.9 \times 0.03567=0.0321$ bar and $\omega_{v, \infty}=0.0321 /(1.61 \times 1-0.61 \times 0.0321)=0.02018$.
Similarly, $p_{\text {sat }}\left(82.5^{\circ} \mathrm{C}\right)=0.5261$ bar and $\omega_{v, w}=0.4081$.
Thus, $\mathrm{B}=(0.02018-0.4081) /(0.4081-1)=0.6554$, and

$$
\frac{g}{g^{*}}=\frac{\ln (1+B)}{B} \times\left(\frac{P r}{S c}\right)^{0.33} \times\left(\frac{M_{m i x}, w}{M_{m i x, \infty}}\right)^{0.667}
$$

where $M_{m i x, w}=24.51$ and $M_{m i x, \infty}=28.76$. Therefore, substitution gives $\mathrm{g}=g^{*} \times 0.7039=0.01344 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$. Hence, evaporation rate is
$\dot{m}=g \times B \times A_{\text {plate }}=0.01344 \times 0.6554 \times 0.33 \times 1$
$=0.0029 \mathrm{~kg} / \mathrm{s}$, or $10.46 \mathrm{~kg} / \mathrm{hr}$ (Ans a) .

Soln (Contd.) - 2 - L39($\frac{9}{16}$)

In this case, since $L e \simeq 1$, we have

$$
\begin{aligned}
B & =\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}+q_{l} / N_{w}}=0.6554 \quad \text { Taking } T_{\text {ref }}=0 \\
h_{m, \infty} & =1.005 \times 27+(0.875 \times 27+2503) \times 0.02018 \\
& =78.12 \mathrm{~kJ} / \mathrm{kg} \\
h_{m, w} & =1.005 \times 82.5+(0.875 \times 82.5+2503) \times 0.4081 \\
& =1133.85 \mathrm{~kJ} / \mathrm{kg} \\
h_{T L} & =4.187 \times 82.5=345.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Hence $\left(q_{l} / N_{w}\right)=-2400 \mathrm{~kJ} / \mathrm{kg}$. Negative sign indicates that heat is to be supplied. Thus,
$Q_{\text {supp }}=2400 \times 0.0029=6.98 \mathrm{~kW}($ Ans b $)$.

Evaporation from a Lake - L39 $\left(\frac{10}{16}\right)$
 Prob: A 10 kmph breeze

 (at $40^{\circ} \mathrm{C}$ and $20 \% \mathrm{RH}$) blows over a lake (at $30^{\circ} \mathrm{C}$). The lake receives $q_{\text {solar }}=500 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$ Calculate the time required for the water level to drop by 1 cm .Assume turbulent boundary layer.

Then, assuming Le $\simeq 1$ Take $\nu=15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ $\mathrm{Sc}=0.61$ and $\mathrm{Pr}=0.7$.

$$
\begin{aligned}
B & =\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1} \\
& =\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T L}+q_{l} / N_{w}}
\end{aligned}
$$

Soln: Here
$p_{v, \infty}=0.2 \times p_{\text {sat }}\left(40^{\circ} \mathrm{C}\right)$.
$=0.2 \times 0.07384$
$=0.01477$ bar. Therefore,
$\omega_{\mathrm{V}, \infty}=\frac{0.01477}{1.61-0.61 \times 0.01477}$
$=0.00919$.
where $\omega_{v, w}, h_{m, w}$ and q_{l} are not known.

Soln (Contd.) - 1 - L39 ($\frac{11}{16}$)

But, $N_{w} h_{T}+q_{r a d}+q_{l}=N_{w} h_{T L}$. Hence,

$$
B_{h}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{T}-q_{r a d} / N_{w}}
$$

Now, $N_{w}=g \times B_{h}$. Hence

$$
B_{h}=\frac{h_{m, \infty}-h_{m, w}+q_{r a d} / g}{h_{m, w}-h_{T}}=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1}
$$

where taking $T_{\text {ref }}=0$

$$
\begin{aligned}
h_{m, \infty} & =1.005 \times 40+(0.875 \times 40+2503) \times 0.00919 \\
& =63.3 \mathrm{~kJ} / \mathrm{kg} \\
h_{m, w} & =1.005 T_{w}+\left(0.875 T_{w}+2503\right) \omega_{v, w} \\
h_{T} & =4.187 \times 30=125.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Soln (Contd.) - 2 - L39($\frac{12}{16}$)
Here, $U_{\infty}=10 \mathrm{kmph}=2.78 \mathrm{~m} / \mathrm{s}$. Hence,
$R e_{L}=2.78 \times 100 / 15 \times 10^{-6}=18.53 \times 10^{6}$
If we assume that $B \rightarrow 0$, then $g \rightarrow g^{*}$ and for a turbulent BL ,

$$
\frac{g^{*}}{\rho_{m} U_{\infty}}=0.0365 R e_{L}^{-0.2} \operatorname{Pr}^{-0.67}=0.001617
$$

where $\rho_{m}=\rho_{v}+\rho_{a}=\rho_{a}\left(1+W_{\text {mean }}\right)$ and
$g^{*}=0.00449 \rho_{m}$ or $\frac{q_{\text {rad }}}{g^{*}}=\frac{0.5}{\left(0.00449 \rho_{m}\right)}=\left(\frac{111.36}{\rho_{m}}\right) \mathrm{kJ} / \mathrm{kg}$.
Therefore, subtitution gives

$$
\begin{aligned}
B & =\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1} \\
& =\frac{63.3-\left[1.005 T_{w}+\left(0.875 T_{w}+2503\right) \omega_{v, w}\right]+\left(\frac{111.36}{\rho_{m}}\right)}{\left[1.005 T_{w}+\left(0.875 T_{w}+2503\right) \omega_{v, w}\right]-125.4}
\end{aligned}
$$

where $\omega_{v, w}$ corresponds to T_{w} at stauration and ρ_{m} is evalutated from $W_{\text {mean }}=0.5\left(W_{w}+W_{\infty}\right)$.

Soln (Contd.) - 3 - L39($\left.\frac{13}{16}\right)$

We need trial-and-error procedure as follows.
(1) Assume T_{w}. Hence, determine $p_{v, w}$ from steam tables and evaluate $W_{w}=0.622 \times p_{v, w} /\left(p_{\text {tot }}-p_{v, w}\right)$. Hence, evaluate $W_{\text {mean }}$ and $T_{\text {mean }}$. Use gas law to evaluate, ρ_{a} at $T_{\text {mean }}$ and, hence $\rho_{m}=\rho_{a}\left(1+W_{\text {mean }}\right)$
(2) Substitute in the 2 eqns for B. If LHS $=$ RHS, accept T_{w} and $\omega_{v, w}$.
In the present case, $T_{w} \simeq 39.5^{\circ} \mathrm{C}, \omega_{v, w}=0.043$ and $\rho_{m}=1.16$ giving $\mathrm{B}=0.0354$ and $N_{w}=g^{*} B=2.035 \times 10^{-4} \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$, or $0.7324 \mathrm{~kg} / m^{2}-\mathrm{hr}$.
Now, for $\Delta h=1 \mathrm{~cm}$ drop in water level, we use mass balance $\rho_{\text {water }} \times(\Delta h / \Delta t)=N_{w}$.
This gives $\Delta t=13.65 \mathrm{hrs}$ (Ans).
Note that the lake surface temperature is very cose to the free stream air temperature.

Humidification - L39 ($\frac{14}{16}$)

Prob: Moist air ($W_{\text {in }}=0.003$ at $24^{\circ} \mathrm{C}$) enters a tube (2.5 cm dia, 75 cm long) at the rate of $9 \mathrm{~kg} / \mathrm{hr}$.
The tube-wall is maintained wet at $24^{\circ} \mathrm{C}$. Calculate (a) $W_{\text {exit }}$ and (b) Heat to be supplied to the tube wall. Take $\mathrm{D}=0.09 \mathrm{~m}^{2} / \mathrm{hr}$ and Sc = 0.6 Assume Temp remains constant.

Soln: Part (a) In this case $\omega_{v, w}$ is constant with x .

We define

$$
B_{x}=\left(\omega_{v, x}-\omega_{v, w}\right) /\left(\omega_{v, w}-1\right) .
$$

Then, $d \omega_{v, x}=\left(\omega_{v, w}-1\right) d B_{x}$.
For the differntial element dx
$N_{w, x} d x=(\dot{m} / \pi d) \times d \omega_{v, x}$ or
$g B_{x} d x=(\dot{m} / \pi d)\left(\omega_{v, w}-1\right) d B_{x}$ or, (next slide)

Soln (Contd.) - 1 - L39($\frac{15}{16}$)

$$
\frac{d B_{x}}{B_{x}}=\left\{\frac{\pi d g}{\dot{m}\left(\omega_{v, w}-1\right)}\right\} d x \rightarrow \frac{B_{o u t}}{B_{i n}}=\exp \left\{\frac{\pi d g L}{\dot{m}\left(\omega_{v, w}-1\right)}\right\}
$$

where $L=$ tube length. In this problem,
corresponding to $24^{\circ} \mathrm{C}, \omega_{v, w}=0.01875\left(W_{w}=0.01632\right)$ and corresponding to $W_{i n}=0.003, \omega_{v, i n}=0.002991$.
Therefore $B_{i n}=0.01606$.
Determination of g : At inlet, $W_{m}=0.5\left(W_{w}+W_{i n}\right)=0.01088$ and at $24^{\circ} \mathrm{C}, \rho_{a}=1.189$. Therefore $\rho_{m}=\rho_{a}\left(1+W_{m}\right)=1.202$.
Further, $\nu_{m}=S c \times D=0.054 \mathrm{~m}^{2} / \mathrm{hr}=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
Also, $\dot{m}=u_{i n} \times(\pi / 4) d^{2}$ or $u_{i n}=5.09 \mathrm{~m} / \mathrm{s}$. Hence, $\operatorname{Re}=u_{i n} d / \nu_{m}=8488.3$. Now, taking $L e=1$, $S h=g d /\left(\rho_{m} D\right)=0.023 R e^{0.8} S c^{0.4}=26.06$ or, $g=112.76 \mathrm{~kg} / \mathrm{m}^{2}$-hr. Substitution gives $B_{\text {out }}=0.00757$.

Soln (Contd.) - 2 - L39($\frac{16}{16}$)

Hence, $\omega_{v, \text { out }}=\omega_{v, w}+B_{\text {out }}\left(\omega_{v, w}-1\right)=0.01137$ or $W_{\text {out }}=0.01145 \mathrm{~kg} / \mathrm{kg}$ of dry air (Ans).
Now Energy balance over element dx gives
$\dot{m} \times d h_{m, x}=\left(N_{w, x} h_{T L}-q_{l, x}\right) \times \pi d d x$. Integration gives

$$
\begin{aligned}
-\bar{q}_{l} & =-\frac{1}{L} \int_{0}^{L} q_{l, x} d x \\
& =\left(\frac{\dot{m}}{\pi d}\right) \int_{0}^{L} \frac{d h_{m}}{d x} d x-g h_{T L} \int_{0}^{L} B_{x} d x \\
& =\frac{\dot{m}}{\pi d}\left[h_{m, \text { out }}-h_{m, \text { in }}-h_{T L}\left(\omega_{v, \text { out }}-\omega_{v, \text { in }}\right)\right]
\end{aligned}
$$

where taking $T_{\text {ref }}=0, h_{m, \text { out }}=52.82, h_{m, \text { in }}=31.664$ and $h_{T L}=4.187 \times 24=100.49 \mathrm{~kJ} / \mathrm{kg}$.
Hence $\bar{q}_{l}=-0.646 \mathrm{~kW} / \mathrm{m}^{2} \quad$ (Ans)

