ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-38 CONV M T - COUETTE FLOW MODEL

LECTURE-38 CONV M T COUETTE FLOW MODEL

(1) Gas Injection - Effect of property variation and ω_{T} - LBL
(2) Gas Injection - Effect of property variation and ω_{T}-TBL
(3) Benzene evaporation in convective environment

Couette flow model permits effects of fluid property variations to be studied.

Gas Injection $\left(\omega_{T}=1\right)-\operatorname{L38}\left(\frac{1}{14}\right)$

Prob: Consider laminar Couette flow of air in which a gas with a specified $\omega_{g, T}$ is injected. Develop relationship $\left(g / g^{*}\right) \sim B$ when the gas is $\mathrm{CO}_{2}, \mathrm{He}$ and H_{2}. and study the effect of $\omega_{g, \tau}$.

Soln: In the Couette flow model, $\partial(\rho u) / \partial x=0=\partial(\rho v) / \partial y$. Hence, $N_{w}=\rho_{w} v_{w}=\rho v=$ const. The species transfer Eqn

$$
N_{w} \frac{\partial \omega_{g}}{\partial y}=\frac{\partial}{\partial y}\left(\rho_{m} D \frac{\partial \omega_{g}}{\partial y}\right)
$$

Integrating once $N_{w}\left(\omega_{g, y}-\omega_{g, w}\right)=$

$$
\left.\rho_{m} D \frac{\partial \omega_{g}}{\partial y}\right|_{y}-\left.\rho_{m} D \frac{\partial \omega_{g}}{\partial y}\right|_{w}
$$

Now, boundary condition gives (next slide)

Soln (Contd) - 1 -L38($\frac{2}{14}$)

$$
N_{w}=\frac{\rho_{m} D \partial \omega_{g} /\left.\partial y\right|_{w}}{\omega_{g, w}-\omega_{g, T}}
$$

Hence

$$
\begin{aligned}
N_{w}\left(\omega_{g, y}-\omega_{g, w}\right) & =\left.\rho_{m} D \frac{\partial \omega_{g}}{\partial y}\right|_{y}-N_{w}\left(\omega_{g, w}-\omega_{g, T}\right) \text { or } \\
\left.\rho_{m} D \frac{\partial \omega_{g}}{\partial y}\right|_{y} & =N_{w}\left(\omega_{g, y}-\omega_{g, T}\right)
\end{aligned}
$$

where $D=$ const $\neq F\left(\omega_{g}\right)$ because $p \& T$ are const, but

$$
\begin{aligned}
\rho_{m} & =\frac{p}{R_{u} T} M_{\text {mix }}=\frac{p}{R_{u} T}\left(\sum \frac{\omega_{j}}{M_{j}}\right)^{-1} \\
& =\frac{p}{R_{u} T}\left[\frac{M_{g} M_{a}}{M_{a} \omega_{g}+M_{g}\left(1-\omega_{g}\right)}\right]
\end{aligned}
$$

Soln (Contd) - 2 - L38 $\left(\frac{3}{14}\right)$

Substitution and intgration from $\mathrm{y}=0$ to δ gives

$$
\int_{\omega_{g, w}}^{0} \frac{d \omega_{g}}{a \omega_{g}^{2}+b \omega_{g}+c}=\frac{N_{w} R_{u} T \delta}{p M_{g} M_{a} D} \text { with }
$$

$a=\left(M_{a}-M_{g}\right), \quad b=M_{g}-\omega_{g, T}\left(M_{a}-M_{g}\right), \quad c=-M_{g} \omega_{g, T}$ where the LHS is given by

$$
\begin{aligned}
\mathrm{LHS} & =\frac{1}{\sqrt{b^{2}-4 a c}} \ln \left[\frac{2 a \omega_{g}+b-\sqrt{b^{2}-4 a c}}{2 a \omega_{g}+b+\sqrt{b^{2}-4 a c}}\right]_{\omega_{g, w}}^{0} \\
& =\frac{1}{M_{g}+\omega_{g, T}\left(M_{a}-M_{g}\right)} \ln \left[1+B+\omega_{g, T} B\left(\frac{M_{a}}{M_{g}}-1\right)\right]
\end{aligned}
$$

where

$$
B=\frac{0-\omega_{g, w}}{\omega_{g, w}-\omega_{g, T}}=\frac{\omega_{g, w}}{\omega_{g, T}-\omega_{g, w}} \text { and } \omega_{g, w}=\omega_{g, T} \times \frac{B}{1+B}
$$

Soln (Contd) - 3 - L38($\frac{4}{14}$)

Now, for the Couette flow model

$$
N_{w}=g B, \quad \text { and } \quad \frac{R_{u} T}{p M_{g}}=\frac{1}{\rho_{g}}
$$

Therefore

$$
\mathrm{RHS}=\frac{N_{w} R_{u} T \delta}{p M_{g} M_{a} D}=\frac{g B \delta}{\rho_{g} M_{a} D}
$$

Equating LHS $=$ RHS and rearranging

$$
\begin{aligned}
\left(\frac{g \delta}{\rho_{g} D}\right) & =\left(\frac{M_{a}}{M_{g}}\right)\left[\frac{\ln \left(1+B^{*}\right)}{B^{*}}\right] \text { where } \\
B^{*} & =B\left\{1+\omega_{g, T}\left(\frac{M_{a}}{M_{g}}-1\right)\right\} . \text { Hence } \\
\left(\frac{g}{g^{*}}\right)_{v p} & =\frac{\ln \left(1+B^{*}\right)}{B^{*}}(\text { Ans }) \rightarrow\left(\frac{g}{g^{*}}\right)_{c p}=\frac{\ln (1+B)}{B}
\end{aligned}
$$

where subscript 'vp' for variable and 'cp' for const property.

Soln $-\left(\frac{g}{g^{*}}\right) \sim B$ for $\omega_{g, T}=1-\operatorname{L38}\left(\frac{5}{14}\right)$

B	cp	$v^{\text {co }}$	$v p_{\text {He }}$	$v p_{H_{2}}$	${ }_{\text {g,w }}$
0	1.0	1.0	1.0	1.0	0.0
. 25	. 893	. 926	. 571	. 422	. 200
. 50	. 811	. 864	. 422	. 291	. 333
1.0	. 693	. 768	. 291	. 189	. 500
1.5	. 611	. 695	. 228	. 144	60
2.0	. 549	. 638	. 189	. 117	. 667
2.5	. 501	. 591	. 163	. 0998	. 714
3.0	. 462	. 552	. 144	. 0873	. 75

(1) $\omega_{g, T}=1$ implies that the gas is the only transferred substance . Also, $B^{*}=B M_{a} / M_{g}$.
(2) $\left(g / g^{*}\right)_{v p, \mathrm{CO}_{2}}>\left(g / g^{*}\right)_{c p}$ because $M_{\mathrm{CO}_{2}}>M_{\text {air }}$
(3) For He and H_{2}, this trend reverses.
(9) $\omega_{g, w}$ increases with B

Soln $-\left(\frac{g}{g^{*}}\right) \sim B$ for $\omega_{g, T}=0.01-\operatorname{L38}\left(\frac{6}{14}\right)$

B	CP	$v p_{\mathrm{CO}_{2}}$	$v p_{\mathrm{He}}$	$v p_{\mathrm{H}_{2}}$	$\omega_{g, w}$
0	1.0	1.0	1.0	1.0	0.0
.25	.893	.893	.887	.888	.002
.50	.811	.811	.802	.792	.0033
1.0	.693	.694	.681	.668	.005
1.5	.611	.612	.598	.584	.006
2.0	.549	.550	.536	.522	.0067
2.5	.501	.502	.488	.474	.0071
3.0	.462	.463	.449	.435	.0075

(1) $\omega_{g, T}=.01$ implies that the gas in the transferred substance is a small fraction - rest is air.
(2) $\left(g / g^{*}\right)_{v p, \mathrm{CO}_{2}} \simeq\left(g / g^{*}\right)_{c p}$
(3) For He and $H_{2},\left(g / g^{*}\right)_{v p}<\left(g / g^{*}\right)_{c p}$
(C) $\omega_{g, w}$, though small, increases with B

Correlation with $\left(\frac{M_{\text {mix }, \infty}}{M_{\text {mix }, W}}\right)-\operatorname{L3} 3\left(\frac{7}{14}\right)$

Here, $M_{m i x, w}=M_{a} M_{g} /\left(M_{a} \omega_{g, w}+M_{g}\left(1-\omega_{g, w}\right)\right)$ and $M_{\text {mix }, \infty}=M_{a}$ (because $\omega_{g, \infty}=0$). Hence, from slide 4, and using $\omega_{g, w}=\omega_{g, T} \times B /(1+B)$

$$
\begin{aligned}
B^{*} & =B\left\{1+\omega_{g, T}\left(\frac{M_{a}}{M_{g}}-1\right)\right\} . \\
\frac{B^{*}}{B} & =1+\left(\frac{1+B}{B}\right)\left(\frac{M_{m i x}, \infty}{M_{m i x, w}}-1\right) \\
\frac{\left(g / g^{*}\right)_{v p}}{\left(g / g^{*}\right)_{c p}} & =\frac{\ln \left(1+B^{*}\right)}{B^{*}} \times \frac{B}{\ln (1+B)}
\end{aligned}
$$

This shows dependence on $M_{\text {mix }, w} / M_{\text {mix }, \infty}$ and B as recommended correction from boundary layer flow model. If $\omega_{g, T}=0, B^{*}=B$. If $\omega_{g, T}=1, B^{*}=B\left(M_{a} / M_{g}\right)$

Turbulent Couette Flow - 1 - L38($\frac{8}{14}$)

 Here, the governing Eqn will be$$
N_{w}\left(\omega_{g}-\omega_{g, T}\right)=\rho_{m}\left(D+D_{t}\right) \frac{d \omega_{g}}{d y}
$$

where

$$
\begin{aligned}
\rho_{m} D_{t} & =\rho_{m} \frac{\nu_{t, \text { ref }}}{S c_{t}} \quad \text { But, from Van-Driest model } \\
\nu_{t, \text { ref }} & =\frac{\mu_{t}}{\rho_{\text {ref }}}=I_{m}^{2} \frac{\partial u}{\partial y} \rightarrow \frac{\partial u}{\partial y}=C \\
& =C\left(\frac{\nu_{\text {ref }}}{u_{\tau}}\right)^{2}\left(\kappa y^{+}\right)^{2}\left\{1-\exp \left(-\frac{y^{+}}{A^{+}}\right)\right\}^{2} \text { and } \\
& =C\left(\frac{\nu_{\text {ref }}}{u_{\tau}}\right)^{2}\left(0.08 \delta^{+}\right)^{2} \text { for } y^{+}>26 \text { where } \\
C\left(\frac{\nu_{\text {ref }}}{u_{\tau}}\right)^{2} & =C \frac{\nu_{\text {ref }}^{2} \rho_{\text {ref }}}{\tau_{w}}=C \times \frac{\mu_{\text {ref }} \nu_{\text {ref }}}{\mu_{\text {ref }} C}=\nu_{\text {ref }}
\end{aligned}
$$

Turbulent Couette Flow - 2 - L38($\frac{9}{14}$)

Substituting for D_{t} and ρ_{m}, we have

$$
\begin{aligned}
N_{w}\left(\omega_{g}-\omega_{g, T}\right) & =\rho_{m} D\left(1+\frac{\nu_{t, \text { ref }}}{S c_{t} D}\right) \frac{d \omega_{g}}{d y} \\
& =\left(\frac{D p M_{a} M_{g}}{R_{u} T}\right) \times \frac{u_{\tau} / \nu_{\text {ref }}}{M_{a} \omega_{g}+M_{g}\left(1-\omega_{g}\right)} \\
& \times F \times \frac{d \omega_{g}}{d y^{+}} \text {where } \\
F= & 1+\left(\frac{S c}{S c_{t}}\right)\left(\kappa y^{+}\right)^{2}\left\{1-\exp \left(-\frac{y^{+}}{A^{+}}\right)\right\}^{2} y^{+}<26 \\
= & 1+\left(\frac{S c}{S c_{t}}\right)\left(0.08 \delta^{+}\right)^{2} y^{+}>26
\end{aligned}
$$

Turbulent Couette Flow - 3 - L38($\frac{10}{14}$)

Taking $N_{w}=g B,\left(p M_{g}\right) /\left(R_{u} T\right)=\rho_{g}$ and $u_{\tau}=U_{\infty} \sqrt{C_{f, x} / 2}$,

$$
\begin{aligned}
\text { LHS } & =\left(\frac{g}{\rho_{g} U_{\infty}} \sqrt{\frac{2}{C_{f, X}}} S c\right) \times \text { INT where INT }=\int_{0}^{\delta^{+}} \frac{d y^{+}}{F} \\
\text { RHS } & =\frac{M_{a}}{B} \int_{\omega_{g, w}}^{0} \frac{d \omega_{g}}{\left(\omega_{g}-\omega_{g, T}\right)\left\{M_{a} \omega_{g}+M_{g}\left(1-\omega_{g}\right)\right\}} \\
& =\frac{\ln \left(1+B^{*}\right)}{B^{*}} \rightarrow B^{*}=B\left\{1+\omega_{g, T}\left(\frac{M_{a}}{M_{g}}-1\right)\right\}
\end{aligned}
$$

Taking $A^{+}=26$ and $S c_{t}=0.9$, we have
INT $=9.62$ for $\mathrm{CO}_{2}-$ Air, $\mathrm{Sc}=0.96$
INT $=14.57$ for $\mathrm{H}_{2}-$ Air and He -Air, $\mathrm{Sc}=0.22$

Turbulent Couette Flow - 4 - L38($\frac{11}{14}$)

Therefore

$$
\frac{g_{v p}}{\rho_{g} U_{\infty}} \times \sqrt{\frac{2}{C_{f, x}}} \times S c=\frac{1}{\text { INT }} \times \frac{\ln \left(1+B^{*}\right)}{B^{*}}
$$

and

$$
\frac{\left(g / g^{*}\right)_{v p}}{\left(g / g^{*}\right)_{c p}}=\frac{\ln \left(1+B^{*}\right)}{B^{*}} \times \frac{B}{\ln (1+B)}
$$

This result is same as that for a Laminar boundary layer.
This is because it is assumed that the value of INT is same for 'cp' and 'vp' conditions.
Note that $g_{v p}$ is significantly influenced by INT (Sc).

Evaporation of $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{L} 38\left(\frac{12}{14}\right)$

Prob: $C_{6} H_{6}$ evaporates from the outer surface of a circular cylinder in air flowing at $6 \mathrm{~m} / \mathrm{s}$ normal to the cylinder.
From expts, $h_{\text {cot }, v_{w}=0}=85 \mathrm{~W} / m^{2}-\mathrm{K}$ and $\mathrm{B}=0.9$.
Allowing for property variations, estimate N_{w} and ω_{w}.
Given: $\mathrm{Sc}=1.71, \operatorname{Pr}=0.71, c p_{C_{6} H_{6}}=1.69 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $c p_{a}=1.01 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

Soln: Here,

$$
B=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1}=0.9 \rightarrow \omega_{v, w}=0.4737 \text { (Ans) }
$$

Therefore, $\omega_{v, m}=0.5\left(\omega_{v, \infty}+\omega_{v, w}\right)=0.2368$.
$c_{p m}=1.69 \times 0.2368+1.01 \times 0.7632=1.171 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
Hence, $g^{*}=\left(h_{\text {cof }, v_{w}=0} / c_{p m}\right)=0.0726 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$.
Also, $M_{\text {mix }, \infty}=29$ and
$M_{m i x, w}=(0.4737 / 78+0.5263 / 29)^{-1}=41.286$.

Soln (Contd.) - L38($\left.\frac{13}{14}\right)$

For Flow over a cylinder ${ }^{1}, N u_{c p} \propto P r^{0.37}$.
Therefore, using the short-cut empirical formula

$$
\begin{aligned}
\frac{g_{v p}}{g_{c p}^{*}} & =\frac{\ln (1+B)}{B} \times\left(\frac{P r}{S c}\right)^{0.37} \times\left(\frac{M_{\text {mix }, \infty}}{M_{m i x, w}}\right)^{-0.67} \\
& =\frac{\ln (1+0.9)}{0.9} \times\left(\frac{0.71}{1.71}\right)^{0.37} \times\left(\frac{29}{41.286}\right)^{-0.67}=0.6525
\end{aligned}
$$

Therfore, $g=0.0726 \times 0.6525=0.0474 \mathrm{~kg} / m^{2}-\mathrm{s}($ Ans) . Thus, the effect of property variations is to reduce $g_{v p}$ compared to $g_{c p}$.

[^0]
Soln (Contd.) - L38($\frac{14}{14}$)

If we followed the Couette flow theory, then in this case,

$$
B^{*}=B\left\{1+\omega_{g, T}\left(\frac{M_{a}}{M_{g}}-1\right)\right\}=0.3346
$$

Hence

$$
\left(\frac{g}{g^{*}}\right)_{v p}=\frac{\ln (1+0.3346)}{0.3346}=0.8626
$$

But, for variable properties, $h_{\text {cof }, v p}=h_{c o f, c p} \times \operatorname{Pr}{ }^{25}$. Therefore, $g_{v p}=g_{c p}^{*} \times(0.71)^{0.25} \times 0.8626=0.0575 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{s}$. This value is greater than that obtained from the empirical formula. Thus, Couette flow theory provides an approximate answer due to linear velocity profile assumption.

[^0]: ${ }^{1}$ Zhukauskas A Heat Transfer from Tubes in Crossflow, Eds: Hartnett J P and Irvine T F, Adv H T, vol 8, Academic Press, (1972)

