ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-38 CONV M T - COUETTE FLOW MODEL

LECTURE-38 CONV M T -COUETTE FLOW MODEL

- **1** Gas Injection Effect of property variation and ω_{T} LBL
- 2 Gas Injection Effect of property variation and ω_T TBL
- Benzene evaporation in convective environment

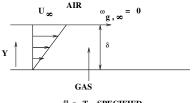
Couette flow model permits effects of fluid property variations to be studied.

Gas Injection ($\omega_T = 1$) - L38($\frac{1}{14}$)

Prob: Consider laminar Couette flow of air in which a gas with a specified $\omega_{g,T}$ is injected. Develop relationship $(g/g^*) \sim B$ when the gas is CO_2 , He and H_2 . and study the effect of $\omega_{g,T}$.

Soln: In the Couette flow model, $\partial(\rho u)/\partial x = 0 = \partial(\rho v)/\partial y$. Hence, $N_w = \rho_w v_w = \rho v = \text{const.}$ The species transfer Eqn

$$N_{w} \frac{\partial \omega_{g}}{\partial y} = \frac{\partial}{\partial y} \left(\rho_{m} D \frac{\partial \omega_{g}}{\partial y} \right)$$



^ω g, T SPECIFIED

Integrating once $N_w (\omega_{g,y} - \omega_{g,w}) =$

$$\rho_m D \frac{\partial \omega_g}{\partial y}|_y - \rho_m D \frac{\partial \omega_g}{\partial y}|_w$$

Now, boundary condition gives (next slide)

Soln (Contd) - 1 - L38($\frac{2}{14}$)

$$N_{w} = \frac{\rho_{m} D \partial \omega_{g} / \partial y|_{w}}{\omega_{g,w} - \omega_{g,T}}$$

Hence

$$N_{w} (\omega_{g,y} - \omega_{g,w}) = \rho_{m} D \frac{\partial \omega_{g}}{\partial y}|_{y} - N_{w} (\omega_{g,w} - \omega_{g,T}) \text{ or}$$
$$\rho_{m} D \frac{\partial \omega_{g}}{\partial y}|_{y} = N_{w} (\omega_{g,y} - \omega_{g,T})$$

where D = const \neq *F*(ω_g) because p & T are const, but

$$\rho_m = \frac{p}{R_u T} M_{mix} = \frac{p}{R_u T} \left(\sum \frac{\omega_j}{M_j} \right)^{-1}$$
$$= \frac{p}{R_u T} \left[\frac{M_g M_a}{M_a \omega_g + M_g (1 - \omega_g)} \right]$$

Soln (Contd) - 2 - L38($\frac{3}{14}$ **)** Substitution and intgration from y = 0 to δ gives

$$\int_{\omega_{g,w}}^{0} \frac{d \,\omega_{g}}{a \,\omega_{g}^{2} + b \,\omega_{g} + c} = \frac{N_{w} \,R_{u} \,T \,\delta}{p \,M_{g} \,M_{a} \,D} \text{ with}$$

 $a = (M_a - M_g), \quad b = M_g - \omega_{g,T} (M_a - M_g), \quad c = -M_g \omega_{g,T}$ where the LHS is given by

LHS =
$$\frac{1}{\sqrt{b^2 - 4 a c}} \ln \left[\frac{2 a \omega_g + b - \sqrt{b^2 - 4 a c}}{2 a \omega_g + b + \sqrt{b^2 - 4 a c}} \right]_{\omega_{g,w}}^0$$
$$= \frac{1}{M_g + \omega_{g,T} (M_a - M_g)} \ln \left[1 + B + \omega_{g,T} B \left(\frac{M_a}{M_g} - 1 \right) \right]$$

where

$$B = \frac{0 - \omega_{g,w}}{\omega_{g,w} - \omega_{g,T}} = \frac{\omega_{g,w}}{\omega_{g,T} - \omega_{g,w}} \text{ and } \omega_{g,w} = \omega_{g,T} \times \frac{B}{1 + B}$$

Soln (Contd) - 3 - L38($\frac{4}{14}$)

Now, for the Couette flow model

$$N_w = g B$$
, and $\frac{R_u T}{p M_g} = \frac{1}{\rho_g}$

Therefore

$$\mathsf{RHS} = \frac{N_w \ R_u \ T \ \delta}{\rho \ M_g \ M_a \ D} = \frac{g \ B \ \delta}{\rho_g \ M_a \ D}$$

Equating LHS = RHS and rearranging

$$(\frac{g \,\delta}{\rho_g \, D}) = (\frac{M_a}{M_g}) \left[\frac{\ln (1+B^*)}{B^*}\right] \text{ where}$$

$$B^* = B \left\{1 + \omega_{g,T} \left(\frac{M_a}{M_g} - 1\right)\right\}. \text{ Hence}$$

$$(\frac{g}{g^*})_{vp} = \frac{\ln (1+B^*)}{B^*} \text{ (Ans)} \rightarrow (\frac{g}{g^*})_{cp} = \frac{\ln (1+B)}{B}$$

where subscript 'vp' for variable and 'cp' for const property.

Soln - $(rac{g}{g^*}) \sim B$ for $\omega_{g,T} =$ 1 - L38($rac{5}{14}$)

В	ср	vp_{CO_2}	vp _{He}	vp _{H2}	$\omega_{g,w}$
0	1.0	1.0	1.0	1.0	0.0
.25	.893	.926	.571	.422	.200
.50	.811	.864	.422	.291	.333
1.0	.693	.768	.291	.189	.500
1.5	.611	.695	.228	.144	.600
2.0	.549	.638	.189	.117	.667
2.5	.501	.591	.163	.0998	.714
3.0	.462	.552	.144	.0873	.750

• $\omega_{g,T} = 1$ implies that the gas is the only transferred substance . Also, $B^* = B M_a/M_g$.

- ${f O}~(g/g^*)_{\it vp,CO_2}>(g/g^*)_{\it cp}$ because $M_{CO_2}>M_{\it air}$
- So For He and H_2 , this trend reverses.
- $\omega_{g,w}$ increases with B

Soln - $(rac{g}{g^*}) \sim B$ for $\omega_{g,T} = 0.01$ - L38($rac{6}{14}$)

В	ср	vp_{CO_2}	vp _{He}	vp_{H_2}	$\omega_{g,w}$
0	1.0	1.0	1.0	1.0	0.0
.25	.893	.893	.887	.888.	.002
.50	.811	.811	.802	.792	.0033
1.0	.693	.694	.681	.668	.005
1.5	.611	.612	.598	.584	.006
2.0	.549	.550	.536	.522	.0067
2.5	.501	.502	.488	.474	.0071
3.0	.462	.463	.449	.435	.0075

• $\omega_{g,T} = .01$ implies that the gas in the transferred substance is a small fraction - rest is air.

2
$$(g/g^*)_{vp,CO_2}\simeq (g/g^*)_{cp}$$

- 3 For He and H_2 , $(g/g^*)_{vp} < (g/g^*)_{cp}$
- $\omega_{g,w}$, though small, increases with B

Correlation with $\left(\frac{M_{mix,\infty}}{M_{mix,w}}\right)$ - L38($\frac{7}{14}$)

Here, $M_{mix,w} = M_a M_g / (M_a \omega_{g,w} + M_g (1 - \omega_{g,w}))$ and $M_{mix,\infty} = M_a$ (because $\omega_{g,\infty} = 0$). Hence, from slide 4, and using $\omega_{g,w} = \omega_{g,T} \times B / (1 + B)$

$$B^{*} = B \left\{ 1 + \omega_{g,T} \left(\frac{M_{a}}{M_{g}} - 1 \right) \right\}.$$

$$\frac{B^{*}}{B} = 1 + \left(\frac{1+B}{B} \right) \left(\frac{M_{mix,\infty}}{M_{mix,w}} - 1 \right)$$

$$\frac{(g/g^{*})_{vp}}{(g/g^{*})_{cp}} = \frac{\ln(1+B^{*})}{B^{*}} \times \frac{B}{\ln(1+B)}$$

This shows dependence on $M_{mix,w}/M_{mix,\infty}$ and B as recommended correction from boundary layer flow model. If $\omega_{g,T} = 0$, $B^* = B$. If $\omega_{g,T} = 1$, $B^* = B(M_a/M_g)$

Turbulent Couette Flow - 1 - L38($\frac{8}{14}$) Here, the governing Eqn will be

$$N_{w}\left(\omega_{g}-\omega_{g,T}
ight)=
ho_{m}\left(D+D_{t}
ight)rac{d\omega_{g}}{dy}$$

where

$$\rho_{m} D_{t} = \rho_{m} \frac{\nu_{t,ref}}{Sc_{t}} \quad \text{But, from Van-Driest model}$$

$$\nu_{t,ref} = \frac{\mu_{t}}{\rho_{ref}} = l_{m}^{2} \frac{\partial u}{\partial y} \rightarrow \frac{\partial u}{\partial y} = C$$

$$= C \left(\frac{\nu_{ref}}{u_{\tau}}\right)^{2} (\kappa y^{+})^{2} \left\{1 - \exp\left(-\frac{y^{+}}{A^{+}}\right)\right\}^{2} \text{ and}$$

$$= C \left(\frac{\nu_{ref}}{u_{\tau}}\right)^{2} (0.08 \ \delta^{+})^{2} \text{ for } y^{+} > 26 \text{ where}$$

$$C \left(\frac{\nu_{ref}}{u_{\tau}}\right)^{2} = C \frac{\nu_{ref}^{2} \rho_{ref}}{\tau_{w}} = C \times \frac{\mu_{ref} \nu_{ref}}{\mu_{ref} C} = \nu_{ref}$$

Turbulent Couette Flow - 2 - L38($\frac{9}{14}$)

Substituting for D_t and ρ_m , we have

$$\begin{split} N_w \left(\omega_g - \omega_{g,T} \right) &= \rho_m \, D \left(1 + \frac{\nu_{t,ref}}{Sc_t \, D} \right) \frac{d \, \omega_g}{dy} \\ &= \left(\frac{D \, p \, M_a \, M_g}{R_u \, T} \right) \times \frac{u_\tau / \nu_{ref}}{M_a \, \omega_g + M_g \, (1 - \omega_g)} \\ &\times F \times \frac{d \, \omega_g}{dy^+} \quad \text{where} \end{split}$$

$$F = 1 + \left(\frac{Sc}{Sc_t}\right) (\kappa y^+)^2 \left\{ 1 - \exp\left(-\frac{y^+}{A^+}\right) \right\}^2 y^+ < 26$$

= $1 + \left(\frac{Sc}{Sc_t}\right) (0.08 \ \delta^+)^2 y^+ > 26$

A (1) > A (2) > A

Turbulent Couette Flow - 3 - L38($\frac{10}{14}$)

Taking $N_w = g B$, $(p M_g)/(R_u T) = \rho_g$ and $u_\tau = U_\infty \sqrt{C_{f,x}/2}$,

LHS =
$$\left(\frac{g}{\rho_g U_{\infty}} \sqrt{\frac{2}{C_{f,x}}} Sc\right) \times \text{ INT where INT} = \int_0^{\delta^+} \frac{dy^+}{F}$$

RHS = $\frac{M_a}{B} \int_{\omega_{g,w}}^0 \frac{d \omega_g}{(\omega_g - \omega_{g,T}) \{M_a \omega_g + M_g (1 - \omega_g)\}}$
= $\frac{\ln (1 + B^*)}{B^*} \rightarrow B^* = B \left\{1 + \omega_{g,T} (\frac{M_a}{M_g} - 1)\right\}$

Taking $A^+ = 26$ and $Sc_t = 0.9$, we have INT = 9.62 for $CO_2 - Air$, Sc = 0.96 INT = 14.57 for $H_2 - Air$ and He-Air, Sc = 0.22 Turbulent Couette Flow - 4 - L38($\frac{11}{14}$)

Therefore

$$rac{g_{vp}}{
ho_g \; U_\infty} imes \sqrt{rac{2}{C_{f,x}}} imes \textit{Sc} = rac{1}{ ext{INT}} imes rac{ ext{ln} \left(1 + B^*
ight)}{B^*}$$

and

$$rac{(g/g^*)_{vp}}{(g/g^*)_{cp}} = rac{\ln\left(1+B^*
ight)}{B^*} imes rac{B}{\ln\left(1+B
ight)}$$

This result is same as that for a Laminar boundary layer. This is because it is assumed that the value of INT is same for 'cp' and 'vp' conditions. Note that q_{vp} is significantly influenced by INT (Sc). **Evaporation of** C_6H_6 - L38($\frac{12}{14}$) **Prob:** C_6H_6 evaporates from the outer surface of a circular cylinder in air flowing at 6 m/s normal to the cylinder. From expts, $h_{cof,v_w=0} = 85 \text{ W/m}^2\text{-K}$ and B = 0.9. Allowing for property variations, estimate N_w and ω_w . Given: Sc = 1.71, Pr = 0.71, $cp_{C_6H_6} = 1.69 \text{ kJ/kg-K}$ and $cp_a = 1.01 \text{ kJ/kg-K}$.

Soln: Here,

$$B = rac{\omega_{m{v},\infty} - \omega_{m{v},m{w}}}{\omega_{m{v},m{w}} - 1} = 0.9 \quad
ightarrow \omega_{m{v},m{w}} = 0.4737 \quad (Ans)$$

Therefore, $\omega_{v,m} = 0.5 (\omega_{v,\infty} + \omega_{v,w}) = 0.2368$. $c_{pm} = 1.69 \times 0.2368 + 1.01 \times 0.7632 = 1.171 \text{ kJ/kg-K}$. Hence, $g^* = (h_{cof,v_w=0}/c_{pm}) = 0.0726 \text{ kg/}m^2\text{-s}$. Also, $M_{mix,\infty} = 29$ and $M_{mix,w} = (0.4737/78 + 0.5263/29)^{-1} = 41.286$.

Soln (Contd.) - L38($\frac{13}{14}$)

For Flow over a cylinder¹, $Nu_{cp} \propto Pr^{0.37}$. Therefore, using the short-cut empirical formula

$$\frac{g_{vp}}{g_{cp}^*} = \frac{\ln(1+B)}{B} \times (\frac{Pr}{Sc})^{0.37} \times (\frac{M_{mix,\infty}}{M_{mix,w}})^{-0.67}$$
$$= \frac{\ln(1+0.9)}{0.9} \times (\frac{0.71}{1.71})^{0.37} \times (\frac{29}{41.286})^{-0.67} = 0.6525$$

Therfore, $g = 0.0726 \times 0.6525 = 0.0474 \text{ kg/}m^2\text{-s}$ (Ans). Thus, the effect of property variations is to reduce g_{vp} compared to g_{cp} .

¹Zhukauskas A Heat Transfer from Tubes in Crossflow, Eds: Hartnett J P and Irvine T F, Adv H T, vol 8, Academic Press, (1972)

April 28, 2011

15/16

Soln (Contd.) - L38($\frac{14}{14}$)

If we followed the Couette flow theory, then in this case,

$$B^* = B\left\{1 + \omega_{g,T}\left(\frac{M_a}{M_g} - 1\right)\right\} = 0.3346$$

Hence

$$(rac{g}{g^*})_{v
ho}=rac{\ln{(1+0.3346)}}{0.3346}=0.8626$$

But, for variable properties, $h_{cof,vp} = h_{cof,cp} \times Pr^{.25}$. Therefore, $g_{vp} = g_{cp}^* \times (0.71)^{0.25} \times 0.8626 = 0.0575 \text{ kg/}m^2\text{-s.}$ This value is greater than that obtained from the empirical formula. Thus, Couette flow theory provides an approximate answer due to linear velocity profile assumption.