ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-36 EVALUATION OF g and N_{w}

LECTURE-36 EVALUATION OF g and N_{w}

- Laminar Boundary Layers
(2) Turbulent Boundary Layers
(3) Overall Procedure for calculating N_{w}

Laminar BL-1-L36($\left.\frac{1}{10}\right)$

(1) Consider Laminar BL with $T_{w}=$ const. and with suction/blowing and without viscous dissipation. For this case, Similarity soln for const properties is

$$
\begin{aligned}
\frac{N u_{x}}{R e_{x}^{0.5}} & =-\theta^{\prime}(0)=F\left(m, \operatorname{Pr}, B_{f}\right) \\
N u_{x} & =\frac{h_{x} x}{k}=\frac{x(\partial T / \partial y)_{w}}{T_{\infty}-T_{w}} \text { and } B_{f}=\frac{V_{w}}{U_{\infty}} R e_{x}^{0.5}
\end{aligned}
$$

(2) This corresponds to $\Psi=T$ and $\omega_{k}=1$ with constant specific heat in all states. Hence, in terms of mass transfer coeff (g)

$$
g=\frac{\Gamma_{\psi}(\partial \Psi / \partial y)_{w}}{\Psi_{\infty}-\Psi_{w}} \text { or } S h_{x}=\frac{g_{x} x}{\Gamma_{\psi}}=\frac{x(\partial \Psi / \partial y)_{w}}{\Psi_{\infty}-\Psi_{w}}=N u_{x}
$$

Laminar BL-2-L36($\frac{2}{10}$)

(1) Similarly, B_{f} can be interpreted as

$$
\begin{aligned}
B_{f} & =\frac{V_{w}}{U_{\infty}} R e_{x}^{0.5}=\frac{N_{w}}{\rho U_{\infty}} R e_{x}^{0.5}=\frac{g B_{\psi}}{\rho U_{\infty}} R e_{x}^{0.5} \\
& =\left(\frac{g_{x} x}{\Gamma_{\psi}}\right) \times\left(\frac{\Gamma_{\psi}}{\mu}\right) \times\left(\frac{\mu}{\rho U_{\infty} x}\right) \times R e_{x}^{0.5} B_{\psi} \\
& =S h_{x}\left(\frac{\Gamma_{\psi}}{\mu}\right) R e_{x}^{-0.5} B_{\psi}
\end{aligned}
$$

(2) This shows that driving force $B_{\psi} \propto B_{f}$. Hence, similarity soln to the ψ-eqn can be interpreted as

$$
\frac{S h_{x}}{R e_{x}^{0.5}}=F\left(m, \frac{\mu}{\Gamma_{\psi}}, B_{\psi}\right)
$$

Laminar BL-3-L36($\left.\frac{3}{10}\right)$

(1) Using the last relation, the constant property heat transfer solutions (lecture 9 - slide 10) can be converted to mass transfer solutions.
(2) Thus, consider case of $B_{f}=-2, \mathrm{~m}=0$ and $\operatorname{Pr}=\mu / \Gamma_{h}=1.0$.
(3) For this case, $N u_{x} R e_{x}^{-0.5}=-\theta^{\prime}(0)=2.1=S h_{x} R e_{x}^{-0.5}$.
(9) Hence,

$$
B_{\psi}=\frac{\left(\mu / \Gamma_{\psi}\right)}{-\theta^{\prime}(0)} \times B_{f}=\frac{1}{2.1} \times(-2.0)=-0.9524
$$

(5) Next slide shows conversions for $\mu / \Gamma_{\psi}=0.7$ and $\mathrm{m}=0$

Laminar BL - 4 - L36($\frac{4}{10}$)

Conversions for $S c=\mu / \Gamma_{\psi}=0.7-\mathbf{m}=\mathbf{0}$

	$\mathrm{m}=0$			
B_{f}	$-\theta^{\prime}(0)$	$B_{\psi}=\frac{S C B_{f}}{-\theta^{\prime}(0)}$	$\frac{g}{g^{*}}=\frac{-\theta^{\prime}(0)}{0.291}$	$\frac{\ln \left(1+B_{\psi}\right)}{B_{\psi}}$
-2.0	1.52	-0.921	5.223	2.756
-1.0	0.872	-0.8027	3.00	2.022
-0.5	0.570	-0.614	1.959	1.55
-0.25	0.429	-0.4079	1.474	1.285
0.0	0.291	0.0	1.0	1.0
0.25	0.166	1.054	0.57	0.683
0.375	0.107	2.453	0.368	0.505
0.5	0.0517	6.77	0.1776	0.303

For $-0.25<B_{\psi}<0.25,\left(g / g^{*}\right) \simeq \ln \left(1+B_{\psi}\right) / B_{\psi}$. But, for large $\left|B_{\psi}\right|$, the Reynolds flux model is not at all satisfactory. For these cases, numerical solutions are desirable. These observations also apply to other values of m and Sc.

Laminar BL-5-L36($\left.\frac{5}{10}\right)$

For Arbitrarily varying U_{∞}, Integral solns (Spalding D B and Chi S W, IJHMT, vol 6, p 363-385 (1963) , show that

Stantonmass $=\frac{g}{\rho U_{\infty}}=\frac{K_{1} \mu^{1.2}\left(\rho U_{\infty}\right)^{K_{2}}}{\left[\int_{0}^{x}\left(\rho U_{\infty}\right)^{K_{3}} d x\right]^{0.5}}$

Sc	B_{ψ}	K_{1}	K_{2}	K_{3}
	-0.9	1.85	0.05	1.1
0.7	0.0	0.418	0.435	1.87
	9.0	0.06	1.90	4.8
	-0.9	0.431	0.45	1.9
5.0	0.0	0.117	0.595	2.19
	9.0	0.023	0.90	2.8
	-0.9	$1.037 S c^{-0.67}$	0.9	2.8
>5	0.0	$0.339 S c^{-0.67}$	0.9	2.8
	9.0	$0.077 S c^{-0.67}$	0.9	2.8

Turbulent BL - L36 ($\frac{6}{10}$)

(1) In Turbulent BLs, the analogy between heat and mass transfer is more perfect because $\Gamma_{\text {eff }}=\Gamma_{l}+\Gamma_{t} \simeq \mu_{l}+\mu_{t}$ with $\Gamma_{t} \gg \Gamma_{l}$ and $\mu_{t} \gg \mu_{l}$. That is, for gases $\operatorname{Pr} \simeq \operatorname{Sc}$ and $P r_{t}=S c_{t} \simeq 0.9$
(2) The turbulent heat transfer correlations for $V_{w}=0$ take the form of $S t_{x, v_{w}=0}=C R e_{x}^{-m} \mathrm{Pr}^{-n}$. Then, from analogy,

$$
\begin{aligned}
S t_{x, V_{w}=0} & =\frac{g^{*}}{\rho U_{\infty}}=C R e_{x}^{-m} S c^{-n} \\
\frac{g}{\rho U_{\infty}} & =\frac{g^{*}}{\rho U_{\infty}} \times \frac{\ln \left(1+B_{\psi}\right)}{B_{\psi}} \\
g^{*} & =\frac{h_{c o f, V_{w}=0}}{C_{p m}}\left(\frac{P r}{S c}\right)^{-n} \quad \rightarrow \quad S c=\frac{\mu}{\Gamma_{\psi}}
\end{aligned}
$$

Effect of Property Variations - L36($\left.\frac{7}{10}\right)$

(1) Deviations from $\left(\mathrm{g} / \mathrm{g}^{*}\right)=\ln (1+\mathrm{B}) / \mathrm{B}$ at large B_{ψ} mainly occur due to property variations through the boundary layer
(2) For Laminar BLs, the recommended property-correction is

$$
\frac{g}{g^{*}}=\frac{\ln \left(1+B_{\psi}\right)}{B_{\psi}} \times\left(\frac{M_{w}}{M_{\infty}}\right)^{0.66}
$$

(3) For Turbulent BLs , the recommended property-correction is

$$
\frac{g}{g^{*}}=\frac{\ln \left(1+B_{\psi}\right)}{B_{\psi}} \times\left(\frac{M_{w}}{M_{\infty}}\right)^{0.40}
$$

where M is molecular weight of the mixture. These relations also apply to internal flows where $B_{\psi}=\left(\Psi_{b}-\Psi_{w}\right) /\left(\Psi_{w}-\Psi_{T}\right)$ and Ψ_{b} is the bulk value.

Binary Diffusion Coeffs L36 $\left(\frac{8}{10}\right)$

Binary diffusion coefficient $D_{a b}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$ at $1 \mathbf{~ a t m}$ and $\mathrm{T}=300 \mathrm{~K}$.

Pair	$D_{a b} \times 10^{6}$	Pair	$D_{a b} \times 10^{6}$
$\mathrm{H}_{2} \mathrm{O}$-air	24.0	CO_{2}-air	14.0
CO -air	19.0	$\mathrm{CO}_{2}-\mathrm{N}_{2}$	11.0
H_{2}-air	78.0	O_{2}-air	19.0
SO_{2}-air	13.0	NH_{3}-air	28.0
$\mathrm{CH}_{3} \mathrm{OH}$-air	14.0	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$-air	11.0
$\mathrm{C}_{6} \mathrm{H}_{6}$-air	8.0	CH_{4}-air	16.0
$\mathrm{C}_{10} \mathrm{H}_{22}$-air	6.0	$\mathrm{C}_{10} \mathrm{H}_{22}-\mathrm{N}_{2}$	6.4
$\mathrm{C}_{8} \mathrm{H}_{18}$-air	5.0	$\mathrm{C}_{8} \mathrm{H}_{18}-\mathrm{N}_{2}$	7.0
$\mathrm{C}_{8} \mathrm{H}_{16}-\mathrm{N}_{2}$	7.1	$\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{N}_{2}$	8.0
$\mathrm{O}_{2}-\mathrm{H}_{2}$	70.0	$\mathrm{CO}_{2}-\mathrm{H}_{2}$	55.0

Assuming ideal gas behavior, the kinetic theory of gases predicts that $D_{a b} \propto\left(T^{1.5} / p\right)$, where T is in Kelvin.

Overall Procedure for N_{w} L36 $\left(\frac{9}{10}\right)$

(1) For the type of mass transfer problem,identify the appropriate conserved property ψ.
(2) Make sure that B_{ψ} can be evaluated from Ψ_{∞}, Ψ_{T} (usually known) and Ψ_{w} (usually not known). If not, select linear combinations of ψ s.
(3) Sometimes, Ψ_{w} needs to be established from iterations.
(9) Identify the heat transfer situation with $V_{w}=0$ corresponding to the mass transfer problem at hand . Hence, evaluate $h_{c o f, v_{w}=0}$ and $g_{h}^{*}=h_{c o f, v_{w}=0} / c_{p m}$.
(0) Hence, evaluate

$$
N_{w}=g \times B=g_{h}^{*} \times\left(\frac{P r}{S c}\right)^{n} \times\left(\frac{M_{w}}{M_{\infty}}\right)^{x} \times \ln \left(1+B_{\psi}\right)
$$

where n and x correspond to the problem at hand.

Summary L36($\frac{10}{10}$)

(1) We have thus examined the validity of

$$
\begin{aligned}
N_{w} & =g \times B_{\psi}=g^{*} \ln \left(1+B_{\psi}\right) \text { and } \\
\frac{g}{g^{*}} & =F(B)=\frac{\ln \left(1+B_{\psi}\right)}{B_{\psi}}
\end{aligned}
$$

(2) It is shown that deviations from this formulas occur when fluid properties vary significantly in the boundary layer at large B_{ψ}. Hence, the calculation of N_{w} is corrected as

$$
N_{w}=g \times B=g_{n}^{*} \times\left(\frac{P r}{S c}\right)^{n} \times\left(\frac{M_{w}}{M_{\infty}}\right)^{x} \times \ln \left(1+B_{\psi}\right)
$$

where $g_{n}^{*}=h_{c o f,}, v_{w}=0 / c_{p m}$.
(3) In the next 3 lectures, we will demonstrate applications of Stefan-, Couette- and Reynolds-flow models to problems of engineering relevance.

