ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-36 EVALUATION OF g and N_w

LECTURE-36 EVALUATION OF g and N_w

- Laminar Boundary Layers
- 2 Turbulent Boundary Layers
- Overall Procedure for calculating N_w

Laminar BL - 1 - L36($\frac{1}{10}$)

• Consider Laminar BL with $T_w = \text{const.}$ and with suction/blowing and without viscous dissipation. For this case, Similarity soln for const properties is

$$\frac{Nu_x}{Re_x^{0.5}} = -\theta'(0) = F(m, Pr, B_f)$$

$$Nu_x = \frac{h_x x}{k} = \frac{x (\partial T/\partial y)_w}{T_\infty - T_w} \text{ and } B_f = \frac{V_w}{U_\infty} Re_x^{0.5}$$

2 This corresponds to $\Psi = T$ and $\omega_k = 1$ with constant specific heat in all states. Hence, in terms of mass transfer coeff (g)

$$g = \frac{\Gamma_{\Psi} \left(\frac{\partial \Psi}{\partial y} \right)_{W}}{\Psi_{\infty} - \Psi_{W}} \text{ or } Sh_{x} = \frac{g_{x} x}{\Gamma_{\Psi}} = \frac{x \left(\frac{\partial \Psi}{\partial y} \right)_{W}}{\Psi_{\infty} - \Psi_{W}} = Nu_{x}$$

Laminar BL - 2 - L36($\frac{2}{10}$)

Similarly, B_f can be interpreted as

$$B_{f} = \frac{V_{w}}{U_{\infty}} Re_{x}^{0.5} = \frac{N_{w}}{\rho U_{\infty}} Re_{x}^{0.5} = \frac{g B_{\Psi}}{\rho U_{\infty}} Re_{x}^{0.5}$$
$$= (\frac{g_{x} x}{\Gamma_{\Psi}}) \times (\frac{\Gamma_{\Psi}}{\mu}) \times (\frac{\mu}{\rho U_{\infty} x}) \times Re_{x}^{0.5} B_{\Psi}$$
$$= Sh_{x} (\frac{\Gamma_{\Psi}}{\mu}) Re_{x}^{-0.5} B_{\Psi}$$

2 This shows that driving force $B_{\Psi} \propto B_f$. Hence, similarity soln to the Ψ -eqn can be interpreted as

$$rac{{\sf Sh}_{\sf x}}{{\sf Re}_{\sf x}^{0.5}}={\sf F}({\it m},rac{\mu}{\Gamma_{\Psi}},{\it B}_{\Psi})$$

Laminar BL - 3 - L36($\frac{3}{10}$)

- Using the last relation, the constant property heat transfer solutions (lecture 9 - slide 10) can be converted to mass transfer solutions.
- 2 Thus, consider case of $B_f = -2$, m = 0 and Pr = $\mu/\Gamma_h = 1.0$.
- For this case, $Nu_x Re_x^{-0.5} = -\theta'(0) = 2.1 = Sh_x Re_x^{-0.5}$.
- Hence,

$$B_{\Psi} = rac{(\mu/\Gamma_{\Psi})}{- heta'(0)} imes B_{f} = rac{1}{2.1} imes (-2.0) = -0.9524$$

Solution Next slide shows conversions for $\mu/\Gamma_{\Psi} = 0.7$ and m = 0

4 E N 4 E N

Laminar BL - 4 - L36($\frac{4}{10}$ **)** Conversions for $Sc = \mu/\Gamma_{\Psi} = 0.7 - m = 0$

	m=0				
B _f	$- heta^{\prime}$ (0)	$B_{\Psi} = rac{\operatorname{Sc}B_{\mathrm{f}}}{- heta^{\prime}\left(0 ight)}$	$rac{g}{g^{*}}=rac{- heta^{\prime}\left(0 ight)}{0.291}$	$\frac{\ln(1+B_{\Psi})}{B_{\Psi}}$	
-2.0	1.52	-0.921	5.223	2.756	
-1.0	0.872	-0.8027	3.00	2.022	
-0.5	0.570	-0.614	1.959	1.55	
-0.25	0.429	-0.4079	1.474	1.285	
0.0	0.291	0.0	1.0	1.0	
0.25	0.166	1.054	0.57	0.683	
0.375	0.107	2.453	0.368	0.505	
0.5	0.0517	6.77	0.1776	0.303	

For $-0.25 < B_{\Psi} < 0.25$, $(g/g^*) \simeq \ln(1 + B_{\Psi})/B_{\Psi}$. But, for large $|B_{\Psi}|$, the Reynolds flux model is not at all satisfactory. For these cases, numerical solutions are desirable. These observations also apply to other values of m and Sc.

Laminar BL - 5 - L36($\frac{5}{10}$)

For Arbitrarily varying U_{∞} , Integral solns (Spalding D B and Chi S W, IJHMT, vol 6, p 363-385 (1963), show that

Stanton_{mass} =
$$\frac{g}{\rho U_{\infty}} = \frac{K_1 \mu^{1.2} (\rho U_{\infty})^{K_2}}{\left[\int_0^x (\rho U_{\infty})^{K_3} dx\right]^{0.5}}$$

Sc	B_{Ψ}	<i>K</i> ₁	K ₂	<i>K</i> ₃
	-0.9	1.85	0.05	1.1
0.7	0.0	0.418	0.435	1.87
	9.0	0.06	1.90	4.8
	-0.9	0.431	0.45	1.9
5.0	0.0	0.117	0.595	2.19
	9.0	0.023	0.90	2.8
	-0.9	1.037 Sc ^{-0.67}	0.9	2.8
> 5	0.0	0.339 Sc ^{-0.67}	0.9	2.8
	9.0	$0.077 \ Sc^{-0.67}$	0.9	2.8

Turbulent BL - L36($\frac{6}{10}$)

- In Turbulent BLs, the analogy between heat and mass transfer is more perfect because $\Gamma_{eff} = \Gamma_l + \Gamma_t \simeq \mu_l + \mu_t$ with $\Gamma_t >> \Gamma_l$ and $\mu_t >> \mu_l$. That is, for gases $\Pr \simeq Sc$ and $\Pr_t = Sc_t \simeq 0.9$
- 2 The turbulent heat transfer correlations for $V_w = 0$ take the form of $St_{x,V_w=0} = C \operatorname{Re}_x^{-m} \operatorname{Pr}^{-n}$. Then, from analogy,

$$\begin{array}{lll} St_{x,V_{w}=0} & = & \displaystyle \frac{g^{*}}{\rho \; U_{\infty}} = C \; Re_{x}^{-m} \; Sc^{-n} \\ \\ \displaystyle \frac{g}{\rho \; U_{\infty}} & = & \displaystyle \frac{g^{*}}{\rho \; U_{\infty}} \times \displaystyle \frac{\ln(1+B_{\Psi})}{B_{\Psi}} \\ \\ \displaystyle g^{*} & = & \displaystyle \frac{h_{cof,V_{w}=0}}{c_{om}} \; (\frac{Pr}{Sc})^{-n} \quad \rightarrow \quad Sc = \displaystyle \frac{\mu}{\Gamma_{\Psi}} \end{array}$$

Effect of Property Variations - L36($\frac{7}{10}$)

- Deviations from $(g / g^*) = \ln (1 + B) / B$ at large B_{Ψ} mainly occur due to property variations through the boundary layer
- Por Laminar BLs, the recommended property-correction is

$$rac{g}{g^*}=rac{\ln(1+B_\Psi)}{B_\Psi} imes(rac{M_w}{M_\infty})^{0.66}$$

So For Turbulent BLs, the recommended property-correction is

$$rac{g}{g^*} = rac{\ln(1+B_\Psi)}{B_\Psi} imes (rac{M_w}{M_\infty})^{0.40}$$

February 27, 2011

9/12

where M is molecular weight of the mixture. These relations also apply to internal flows where $B_{\Psi} = (\Psi_b - \Psi_w)/(\Psi_w - \Psi_T)$ and Ψ_b is the bulk value.

Binary Diffusion Coeffs L36($\frac{8}{10}$) Binary diffusion coefficient D_{ab} (m^2/s) at 1 atm and T = 300 K.

Pair	$D_{ab} imes 10^{6}$	Pair	$D_{ab} imes 10^{6}$
H ₂ O-air	24.0	CO ₂ -air	14.0
CO-air	19.0	$CO_2 - N_2$	11.0
H_2 -air	78.0	O ₂ -air	19.0
SO ₂ -air	13.0	<i>NH</i> ₃-air	28.0
<i>CH</i> ₃ <i>OH</i> -air	14.0	C_2H_5OH -air	11.0
C_6H_6 -air	8.0	<i>CH</i> ₄-air	16.0
$C_{10}H_{22}$ -air	6.0	$C_{10}H_{22}-N_2$	6.4
C_8H_{18} -air	5.0	$C_8H_{18}-N_2$	7.0
$C_8H_{16}-N_2$	7.1	$C_6H_{14}-N_2$	8.0
O_2 - H_2	70.0	CO_2 - H_2	55.0

Assuming ideal gas behavior, the kinetic theory of gases predicts that $D_{ab} \propto (T^{1.5}/p)$, where T is in Kelvin.

Overall Procedure for N_w L36($\frac{9}{10}$)

- For the type of mass transfer problem, identify the appropriate conserved property Ψ .
- 2 Make sure that B_{Ψ} can be evaluated from Ψ_{∞} , Ψ_{T} (usually known) and Ψ_{w} (usually not known). If not, select linear combinations of Ψ_{S} .
- Sometimes, Ψ_w needs to be established from iterations.
- Identify the heat transfer situation with V_w = 0 corresponding to the mass transfer problem at hand . Hence, evaluate $h_{cof, V_w=0}$ and $g_h^* = h_{cof, V_w=0}/c_{pm}$.
- Hence, evaluate

$$N_w = g imes B = g_h^* imes (rac{Pr}{Sc})^n imes (rac{M_w}{M_\infty})^x imes \ln{(1+B_\Psi)}$$

where n and x correspond to the problem at hand.

Summary L36(¹⁰/₁₀)

We have thus examined the validity of

$$egin{array}{rcl} \mathcal{N}_w &=& g imes B_\Psi = g^* \ln \left(1 + B_\Psi
ight) ext{ and } \ rac{g}{g^*} &=& \mathcal{F}(\mathcal{B}) = rac{\ln \left(1 + B_\Psi
ight)}{B_\Psi} \end{array}$$

2 It is shown that deviations from this formulas occur when fluid properties vary significantly in the boundary layer at large B_{Ψ} . Hence, the calculation of N_w is corrected as

$$N_w = g imes B = g_h^* imes (rac{Pr}{Sc})^n imes (rac{M_w}{M_\infty})^x imes \ln{(1+B_\Psi)}$$

where $g_h^* = h_{cof,V_w=0}/c_{pm}.$

In the next 3 lectures, we will demonstrate applications of Stefan-, Couette- and Reynolds-flow models to problems of engineering relevance.

February 27, 2011

12/12