ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

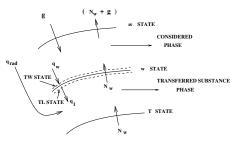
LECTURE-34 REYNOLDS FLOW MODEL

LECTURE-34 REYNOLDS FLOW MODEL

- Reynold Flow Model Definitions
- Reynolds Flux Hypothesis
- Momentum transfer with suction/blowing
- Single phase Conv H T with suction/blowing
- Inert mass transfer without heat transfer
- Inert mass transfer with heat transfer
- Mass transfer with heat transfer and simple chemical reaction (SCR)
- Mass transfer with heat transfer and arbitrary chemical reaction (ACR)

Definitions - 1 - L34($\frac{1}{14}$)

- This model postulates ficticious mass flux (g) called Reynolds flux in the ∞ state
- Model develops algebraic relations that are related to real transport phenomena by reference to (g)
- Model develops $N_w = g \times B$ relation.
- The objective is to relate g to heat transfer coefficient $h_{N_w \to 0}$



- TW state is just inside the Considered phase
- TL state is just inside the Neighbouring phase
- In the T state, temperature and compositions are uniform ogg

Definitions - 2 - L34($\frac{2}{14}$)

Mass Transfer Flux is sum of all species transferred across the interface. Thus

$$N_w = \sum_j N_{j,w} = \sum_k N_{k,T}$$

where species j and k need not be the same .

- 2 q_w is positive when flowing towards the interface from the considered phase.
- *q_l* is positive when flowing away from the interface in the Neighbouring phase
- Therefore, $(q_w q_l) = N_w (h_{TW} h_{TL})$ where h_{TW} and h_{TL} are enthalpies of the transferred substance at the TW and TL states . When $(q_w q_l) \neq 0$, phase-change occurs .
- q_{rad} from Considered phase to the interface is positive. It is accounted in the Neighbouring phase for convenience.

The Hypothesis - L34($\frac{3}{14}$)

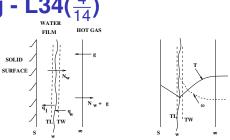
- In different applications with or without chemical reaction, complex processes occur in the considered phase
- To avoid solution of any differential equations, it is assumed that the complex processes can be effectively simulated by
 - A ficticious flux (g) through the $\infty \infty$ plane towards the interface carrying with it properties of the ∞ state.
 - 2 A ficticious flux ($N_w + g$) through the $\infty \infty$ plane away from the interface carrying with it properties of the w state.
- The magnitude of (g) is not affected by presence of gradients of ω_j or T or turbulence, radiation etc in the considered phase
- The g flux is also not affected by direction of N_w
- The g-flux is supposed to produce same effect at the interface that the real flow is likely to produce

A (10) F (10)

An Illustration Evaporative Cooling - L34($\frac{4}{14}$)

Consider a solid surface (T_s) to be protected from hot gases $(T_{\infty} > T_s)$ and $(\omega_{v,\infty} < \omega_{v,w})$ by a thin water film . The **Reynolds Hypothesis states** that a q-flux of hot gases towards the interface together with $(N_w + g)$ flux of cooler moist air away from the interface will produce the effect: $N_w > 0, q_w > 0$ and $q_l < 0$.

The real flow will also produce precisely these effects.



In this sense, the g-flux is considered capable of responding to the mass-fraction and temperature gradients as well as turbulence effects in the considered phase as shown in the right figure.

Momentum Transfer - L34($\frac{5}{14}$)

() Consider control volume between ∞ - and w- states. Then

Rate of Momentum Flux In = $g U_{\infty}$ Rate of Momentum Flux Out = $\tau_w + (N_w + g) u_w = \tau_w$

Hence,

$$\frac{g U_{\infty}}{\tau_{w}} = 1 = \frac{N_{w}}{\rho V_{w}} \text{ or}$$

$$N_{w} = g \times \frac{\rho v_{w} U_{\infty}}{\tau_{w}} = g \times \frac{v_{w}/U_{\infty}}{\tau_{w}/(\rho U_{\infty}^{2})}$$

$$N_{w} = g \times B_{f} \rightarrow B_{f} = \frac{v_{w}/U_{\infty}}{(C_{f,x}/2)}$$

3 Further g = $\tau_w/U_{\infty} = \rho U_{\infty} (C_{f,x}/2)$

Single Phase Conv HT - 1 - L34($\frac{6}{14}$)

() Here, CV between T- and ∞ -states is considered. Then

Rate of Heat Flux In = $g h_{\infty} + N_w h_T$ Rate of Heat Flux Out = $(N_w + g) h_w$

2 Equating and rearranging and taking $T_{ref} = 0$

$$N_w = g \times B_h \quad o \quad B_h = rac{h_\infty - h_w}{h_w - h_T} = rac{(c_
ho T)_\infty - (c_
ho T)_w}{(c_
ho T)_w - (c_
ho T)_T}$$

where $N_w = \rho_w V_w$

If specific heats are equal

$$B_h = \frac{T_\infty - T_w}{T_w - T_T}$$

Single Phase Conv HT - 2 - L34($\frac{7}{14}$)

1 Further, CV between ∞ - and w-states is considered. Then

Rate of Heat Flux In = $g h_{\infty} + N_w h_w$ Rate of Heat Flux Out = $(N_w + g) h_w + q_w$

2 Equating and rearranging $g = q_w/(h_\infty - h_w)$

If specific heats are equal

$$g = rac{q_w}{c_{
ho}\left(T_\infty - T_w
ight)} = rac{h_{cof,v_w}}{c_{
ho}}$$

Thus, g is related to h_{cof, v_w} .

Inert MT without HT - L34($\frac{8}{14}$)

• Here, in all states, temperatures are equal ($T_T = T_w = T_\infty$) • Consider CV between T- and ∞ - states. Then

> Rate of mass Flux In = $g \omega_{v,\infty} + N_w \omega_{v,\tau}$ Rate of Mass Flux Out = $(N_w + g) \omega_{v,w}$

Equating and rearranging

$$N_{w} = g \times B_{m} \rightarrow B_{m} = \frac{\omega_{v,\infty} - \omega_{v,w}}{\omega_{v,w} - \omega_{v,T}}$$

where for a pure liquid in the T-state, $\omega_{v,T} = 1$. $\omega_{v,w}$ is evaluated from equilibrium at T_w

Inert MT with HT - 1 - L34 $\left(\frac{9}{14}\right)$

1 Here, let $T_{\infty} \neq T_w \neq T_T$. Then

2 Consider, CV between ∞ - and T-states is considered. Then

Rate of Heat Flux In $= g h_{m,\infty} + N_w h_{m,T}$ Rate of Heat Flux Out = $(N_w + g) h_{m,w}$ Equating: $N_w = g \times B_{mh}$ where $B_{mh} = \frac{h_{m,\infty} - h_{m,w}}{h_{m,w} - h_{m,\tau}}$

$$\begin{split} h_m &= \omega_v \ h_v + (1 - \omega_v) \ h_a \\ h_v &= c_{p,v} \left(T - T_{ref} \right) + \lambda_{ref}, \quad h_a = c_{p,a} \left(T - T_{ref} \right) \end{split}$$

3 Making Le = 1 assumption, $B_{mh} = B_m$ from which $\omega_{w} \sim h_{w} (T_{w})$ relationship is iteratively calculated.

Inert MT with HT - 2 - L34($\frac{10}{14}$)

() Now, consider CV between ∞ - and w-states. Then

If $T_w = T_{bp}$, $q_L = 0$ and $h_{m,w} - h_{m,TL} = h_{fg}$.

If radiation is included then $N_w h_{m,T} + q_L + q_{rad} = N_w h_{TL}$. Hence

$$B_{mh} = rac{h_{m,\infty} - h_{m,w}}{h_{m,w} - h_{m,T} - q_{rad}/N_v}$$

MT with HT and SCR - 1 - L34($\frac{11}{14}$)

- Here, we have 3 species: fu, O_2 and Pr with stoichiometric coefficient r_{st} = kg of O_2 / kg of fuel.
- 2 Consider CV between ∞ and T-states. Then

$$\begin{array}{ll} \text{For fuel} & g \,\omega_{\textit{fu},\infty} + \omega_{\textit{fu},\textit{T}} \, \textit{N}_{\textit{w}} - \omega_{\textit{fu}_{\textit{w}}} \left(\textit{g} + \textit{N}_{\textit{w}} \right) = - \left| \textit{R}_{\textit{fu}} \right| \\ \text{For } \textit{O}_{2} & g \,\omega_{\textit{O}_{2},\infty} + \omega_{\textit{O}_{2},\textit{T}} \, \textit{N}_{\textit{w}} - \omega_{\textit{O}_{2},\textit{w}} \left(\textit{g} + \textit{N}_{\textit{w}} \right) = - \left| \textit{R}_{\textit{O}_{2}} \right| \end{array}$$

Sut, $R_{O_2} = r_{st} R_{fu}$. Hence, dividing the 2nd Eqn by r_{st} and subtracting from 1st Eqn, we have

$$N_w = g \times B_{\Phi} \quad \rightarrow \quad B_{\Phi} = \frac{\Phi_{\infty} - \Phi_w}{\Phi_w - \Phi_T} \quad \rightarrow \quad \Phi = \omega_{fu} - \frac{\omega_{O_2}}{r_{st}}$$

By the same reasoning, it is also possible to define

$$\Phi = \omega_{fu} + \frac{\omega_{pr}}{1 + r_{st}} = \frac{\omega_{pr}}{1 + r_{st}} + \frac{\omega_{O_2}}{r_{st}}$$

MT with HT and SCR - 2 - L34($\frac{12}{14}$)

Invoking the energy conservation principle and assuming $c_{p,k} = c_{pm}$, we have shown that

$$h_m = \sum_k \omega_k h_k = c_{pm}(T - T_{ref}) + \omega_{fu} \Delta h_c = c_{pm}(T - T_{ref}) + \frac{\omega_{O_2}}{r_{st}} \Delta h_c$$

- Consider CV between ∞ and w-states. Then $g h_{m,\infty} + N_w h_{m,TW} = (g + N_w) h_{m,w} + q_w$
- Taking the 2nd definition for h_m , we have $N_w = g \times B_{mh}$ where taking $T_{ref} = T_w$

$$B_{mh} = \frac{h_{m,\infty} - h_{m,w}}{h_{m,w} - h_{m,TW} + q_w/N_w}$$

$$B_{mh} = \frac{c_{pm} (T_{\infty} - T_w) + \Delta h_c (\omega_{O_2,\infty} - \omega_{O_2,w})/r_{st}}{\Delta h_c (\omega_{O_2,w} - \omega_{O_2,TW})/r_{st} + q_w/N_w}$$

MT with HT and SCR - 3 - L34($\frac{13}{14}$)

• For a volatile liquid fuel or transpiration cooling by a combustible gas (e. g. H_2), $\omega_{O_2,w} = 0$ and since the transferred substance does not contain O_2 , $\omega_{O_2,TW} = 0$. Hence,

$$B_{mh} = rac{c_{
m pm}\left(T_{\infty}-T_{
m w}
ight)+\Delta h_{
m c}\,\omega_{O_2,\infty}/\,r_{st}}{q_{
m w}/N_{
m w}}$$

Now, for a liquid fuel at its boiling point ($T_w = T_{bp}$), $q_w - q_l = N_w (h_{m,TW} - h_{m,TL}) = N_w \lambda_{fu}$. Hence,

$$m{B}_{mh} = rac{m{c}_{
m pm} \left(m{T}_{\infty} - m{T}_{bp}
ight) + \Delta m{h}_{c} \, \omega_{m{O}_{2},\infty} / \, m{r}_{st}}{\lambda_{fu} + m{q}_{L} / m{N}_{w}}$$

So For an atomised tiny liquid droplet, if $T_T \simeq T_{bp}$, $q_L = 0$

MT with HT and ACR - L34($\frac{13}{14}$)

- When it is difficult to ascertain mass-fractions of compounds in different states, it is preferred to use conserved property $\eta_{\alpha} = \sum_{k} \eta_{\alpha,k} \omega_{k}$ where $\eta_{\alpha,k} = M_{\alpha}/M_{k}$.
- O Consider CV between $\infty\text{-}$ and T-states. Element balance gives

$$g \eta_{\alpha,\infty} + N_w \eta_{\alpha,T} = (g + N_w) \eta_{\alpha,w}$$
 or
 $N_w = g \times B_m \rightarrow B_m = \frac{\eta_{\alpha,\infty} - \eta_{\alpha,w}}{\eta_{\alpha,w} - \eta_{\alpha,T}}$

It is usually convenient to combine different η_α into a new conserved property variable Φ as was shown in lecture 32 (slide 18)

Summary - L34($\frac{14}{14}$)

Thus, in all cases, we have shown that

$$N_w = g \times B \quad o \quad B = rac{\Psi_\infty - \Psi_w}{\Psi_w - \Psi_T}$$

where $\Psi = \omega_v, \eta_\alpha, h_m$ and Φ .

Any linear combinations of Ψ are also solutions

- So The result $N_w = g \times B$ from the Reynolds flow model is different from the result $N_w = g^* \ln (1 + B)$ for 1D Stefan flow model (diffusion) and Couette flow model (convection).
- The result from the model correctly identifies B_f in momentum transfer and shows that $g = h_{cof,v_w}/c_p$ in single phase Conv HT.
- The Reynolds flow model result will be employed to provide interface boundary conditions to the Boundary Layer flow model in the next lecture.