ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-33 COUETTE FLOW MODEL

LECTURE-33 COUETTE FLOW MODEL

- Momentum Transfer with wall suction/blowing
- 2 General convective mass transfer
- Interpretation of g*
- Stimate of evaporation/burning time

Reminder of Gov Eqns - L32(¹/₁₂)

In the Couette flow model, $u = const \times y$, (d/dx) = 0 and A = const. Hence, under steady state

$$\frac{d}{dy} [N_{\Psi,y}] = \frac{d}{dy} \left[\rho_m \, v \, \Psi - (\Gamma + \Gamma_t)_{\Psi} \frac{d \, \Psi}{dy} \right] = S_{\Psi}$$

Ψ	Γ _Ψ	S _Ψ
1	0	0
u	$\mu + \mu_t$	0
ω_{k}	$\rho_m \left(D + D_t \right)$	R_k
η_{lpha}	$ \rho_m \left(\boldsymbol{D} + \boldsymbol{D}_t \right) $	0
h _m	$(k_m + k_{m,t})/cp_m$	- d $(\sum m_{y,k}^{''}h_k)/dy$

where \dot{Q}_{rad} is neglected and $m''_{y,k} = -\rho_m D (d\omega_k/dy)$. Also, $\rho_m V A = \dot{m}_w$ = const.

Momentum Transfer - 1 - L33 $(\frac{2}{12})$ **•** For $\Psi = u$, $\frac{d}{dv} \left[N_w u - (\mu + \mu_t) \frac{d u}{dv} \right] = 0$

Integrating once and noting that u = 0 at y = 0 and $(\mu + \mu_t) (d u/dy)|_{y=0} = \tau_w$, the constant of integration $C = -\tau_w$. Hence,

$$\int_{0}^{\infty} \frac{du}{N_{w} u + \tau_{w}} = \int_{0}^{\delta} \frac{dy}{\mu + \mu_{t}} = C_{1} \text{ say}$$
$$= \frac{1}{N_{w}} \ln \left[1 + \frac{N_{w} U_{\infty}}{\tau_{w}} \right]$$

2 But,

$$\frac{N_w U_{\infty}}{\tau_w} = \frac{\rho V_w U_{\infty}}{\tau_w} = \frac{V_w/U_{\infty}}{C_{f,x}/2} = B_f \quad \text{(Blowing Parameter)}$$

Momentum Transfer - 2 - L33($\frac{3}{12}$)

- **1** Therefore, $\ln (1 + B_f) = C_1 N_w = C_1 \rho U_\infty B_f (C_{f,x}/2)$
- 2 As $B_f \rightarrow 0$, let $C_{f,x} = C_{f,x,V_w=0}$.
- Then, assuming C_1 remains independent of whether V_w is finite or zero

$$\frac{C_{f,x,V_w}}{C_{f,x,V_w=0}} = \frac{\ln\left(1+B_f\right)}{B_f}$$

This eqn is applicable to both laminar and turbulent flow. It is derived for dp/dx = 0 but can be taken to be valid for mild Pr gr.

General Conv. Mass Transfer - 1 - L33($\frac{4}{12}$)

• For all 4 types of mass transfer, and an appropriately defined conserved property Ψ , $N_w = N_{\Psi,y}$ = const. Hence, for conserved property ($\Psi - \Psi_w$)

$$\frac{d}{dy} \left[N_w \left(\Psi - \Psi_w \right) - \left(\Gamma + \Gamma_t \right) \frac{d \left(\Psi - \Psi_w \right)}{dy} \right] = 0 \text{ or} \\ N_w \left(\Psi - \Psi_w \right) - \left(\Gamma + \Gamma_t \right) \frac{d \Psi}{dy} = C_1 \text{ (say)}$$

Then, writing this eqn in w- and T-states,

$$C_1 = N_w \left(\Psi_T - \Psi_w
ight) = - \Gamma \, rac{d \, \Psi}{dy} |_w$$

Recall that T-state is deep inside the neighbouring phase where Ψ is uniform and hence (d Ψ/dy)_T = 0. Also, at the w-state, Γ_t = 0.

General Conv. Mass Transfer - 2 - L33($\frac{5}{12}$)

• Hence, replacing $C_1 = N_w (\Psi_T - \Psi_w)$, we have

$$N_w \left(\Psi - \Psi_T
ight) - \left(\Gamma + \Gamma_t
ight) rac{d \Psi}{dy} = 0$$

2 Integrating this Eqn from w-state (y = 0) to ∞ -state (y = δ)

$$rac{1}{N_w} \int_0^\infty \, rac{d \, \Psi}{(\Psi - \Psi_T)} = \int_0^\delta \, rac{dy}{\Gamma + \Gamma_t} = C_2$$
 (say)

Or, integration of LHS gives

$$N_{w} = \frac{1}{C_{2}} \ln (1 + B_{\Psi}) \rightarrow B_{\Psi} = \frac{\Psi_{\infty} - \Psi_{w}}{\Psi_{w} - \Psi_{\tau}} \text{ (and)}$$
$$N_{w} = \frac{C_{1}}{\Psi_{\tau} - \Psi_{w}} = \frac{-\Gamma (d \Psi/dy)_{w}}{\Psi_{\tau} - \Psi_{w}}$$

General Conv. Mass Transfer - 3 - L33($\frac{6}{12}$)

Now, consistent with the theory of heat transfer, we may write

$$\Gamma \, rac{d \, \Psi}{d y} |_w = g imes (\Psi_w - \Psi_\infty)$$

where g is the mass transfer coefficient (kg/m²-s)
 Then,

$$egin{array}{rcl} egin{array}{rcl} N_w &=& g imes (rac{\Psi_\infty-\Psi_w}{\Psi_w-\Psi_ au}) = g imes B_\Psi & ext{and} \ & g &=& rac{1}{C_2} rac{\ln{(1+B_\Psi)}}{B_\Psi} \end{array}$$

3 Let $g \to g^*$ as $B_{\Psi} \to 0$. Further, let C_2 remain same for with and without mass transfer. Then

$$rac{g}{g^*} = rac{\ln\left(1+B_{\Psi}
ight)}{B_{\Psi}}$$

Comments - 1 - L33($\frac{7}{12}$)

• Thus, the ficticious g^* flux is given by

$$N_w = g^* \ln \left(1 + B_{\Psi}\right)$$
 where $\frac{1}{g^*} = C_2 = \int_0^\delta \frac{dy}{\Gamma + \Gamma_t}$

- 2 Thus, g^* may be viewed as the sum of layer-by-layer resistances to mass transfer in the considered phase over the width δ
- This interpretation of g* enables its evaluation from known Γ(y) = Γ(Ψ) in a laminar BL and from known Γ_t(y) from a turbulence model (mixing length, for example) in a turbulent BL. Thus, the Couette flow model permits study of property variations.
- In fact, if Γ = const and $\Gamma_t = 0$ then $g^* = \Gamma/\delta$ which is same as the Stefan flow model with $g^* = \Gamma/L$.

Comments - 2 - L33($\frac{8}{12}$)

• Further, if we consider case of pure heat transfer in the presence of suction or blowing , with $\Psi = h_m = c_p T$

$$-k \frac{d T}{dy}|_w = g c_p (T_w - T_\infty) = h_{cof, V_w} (T_w - T_\infty)$$

where h_{cof, V_w} is heat transfer coefficient.

Then, $h_{cof, V_w} = g/c_p$ and $h_{cof, V_w=0} = g^*/c_p$ Hence,

$$\frac{g}{g^*} = \frac{h_{cof, V_w}}{h_{cof, V_w=0}} = \frac{\mathsf{S}t_{\mathsf{x}, V_w}}{\mathsf{S}t_{\mathsf{x}, V_w=0}} = \frac{\mathsf{ln}\,(1+B_h)}{B_h} \quad \rightarrow \quad B_h = \frac{T_\infty - T_w}{T_w - T_T}$$

This relationship was found to be applicable in a real boundary layer in lecture 30. Thus, the Couette flow model captures most features of a real boundary layer. Evaporation/Burning times - 1 - L33($\frac{9}{12}$)

The previous expressions can be used instantaneously, to estimate evaporation/burning times. Thus

$$\rho_I \frac{dV}{dt} = -\dot{m}_w = -A_w N_w = -A_w g^* \ln\left(1 + B_{\Psi}\right)$$

Integrating from t = 0 (V = V_i) to t = $t_{evpa,burn}$ (V = 0) gives

$$t_{ ext{evap,burn}} = - \, rac{
ho_I}{\ln \left(1 + B_\Psi
ight)} \, \int_{V_i}^0 \, rac{dV}{A_w \, g^st}$$

2 For a liquid drop and diffusion mass transfer, $A_w = 4 \pi r_w^2$, $V = (4/3) \pi r_w^3$, and $g^* = \Gamma_{mh}/r_w$. Hence,

$$t_{evap,burn} = -\frac{\rho_I}{\ln\left(1+B_{\Psi}\right)} \int_{r_{w,i}}^{0} \frac{r_w}{\Gamma_{mh}} dr_w = \frac{\rho_I D_{w,i}^2}{8 \Gamma_{mh} \ln\left(1+B_{\Psi}\right)}$$

Evaporation/Burning times - 2 - L33($\frac{10}{12}$)

For a liquid drop and Convective mass transfer, g* can be determined by a short-cut method. Thus,

$$\frac{\dot{m}_{w,conv}}{\dot{m}_{w,diff}} = \frac{g^* \, 4 \, \pi \, r_w^2 \, \ln \, [1+B]}{\rho_m \, D \, 4 \, \pi \, r_w \, \ln \, [1+B]} = \frac{1}{2} \, \left[\frac{g^* \, D_w}{\rho_m \, D} \right] = \frac{Sh}{2}$$

where $Sh \equiv Sherwood Number$.

Using analogy between HT & MT (Le = 1)

$$Sh = \frac{g^* D_w}{\Gamma_{mh}} = 2 + 0.6 Re^{0.5} Sc^{1/3} \rightarrow Re = \frac{|u_g - u_p| D_w}{\nu_m}$$

where $|u_g - u_p| \equiv$ relative vel between drop and gas.
Then,

$$t_{evap,burn} = -\frac{2 \rho_l}{\ln(1+B_{\Psi})} \int_{r_{w,i}}^{0} \frac{r_w \, dr_w}{\Gamma_{mh} \left(2+0.6 \, Re_{D_w}^{0.5} \, Sc^{1/3}\right)}$$

This evaluation requires numerical integration

3

Problem - L33($\frac{11}{12}$ **)**

Prob: A water droplet ($D_{w,i} = 1$ mm) at 25°C evaporates in air (RH - 25 %, T = 25°C) with $u_{rel} = 5$ m/s. Estimate evaporation time. Take Sc = 0.6

Soln: This is inert MT without HT. The mass fractions are: $\omega_{v,\infty} = 0.0078$, $\omega_{v,w} = 0.02$. Therefore $B_m = 0.0124$. $\rho_m = 1.177 \text{ kg/}m^3$, $\rho_l = 1000 \text{ kg/}m^3$, $D_m = 2.376 \times 10^{-5} \text{ and}$ $\nu_m = D_m \times \text{Sc} = 1.42 \times 10^{-5}$.

Num. Int. - $\Delta t = 0.01$ sec. **Ans**: Evaporation time at $r_w = 0$ is 2.045 sec . If $u_{rel} = 0$, then Evaporation time = 4.66 sec.

Summary - L33($\frac{12}{12}$)

In the Couette flow model with A = const, u = const × y and dΨ / dx = 0, we have shown that

$$N_{\scriptscriptstyle W}=g^*\ln\left(1+B_{\scriptscriptstyle \Psi}
ight)~~{
m where}~~~rac{g}{g^*}=rac{\ln\left(1+B_{\scriptscriptstyle \Psi}
ight)}{B_{\scriptscriptstyle \Psi}}$$

- The ficticios g* flux is interpreted as the sum of layer-by-layer resistances to mass transfer in the considered phase over boundary layer width
- In pure momentum and heat transfer in the presence of suction/blowing

$$\frac{C_{f,x,V_w}}{C_{f,x,V_w=0}} = \frac{\ln\left(1+B_f\right)}{B_f} \quad \frac{St_{x,V_w}}{St_{x,V_w=0}} = \frac{\ln\left(1+B_h\right)}{B_h}$$

In the following lectures, we shall develop similar results using algebraic Reynolds flow model.