ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India
LECTURE-32 STEFAN FLOW MODEL

LECTURE-32 STEFAN FLOW MODEL

(1) Inert mass transfer without heat transfer
(2) Inert mass transfer with heat transfer
(3) Mass transfer with heat transfer and simple chemical reaction (SCR)
(9) Mass transfer with heat transfer and arbitrary chemical reaction (ACR)

Reminder of Gov Eqns - L32 $\left(\frac{1}{20}\right)$

In the Stefan flow model, under steady state

$$
\frac{1}{A} \frac{d}{d y}\left[N_{\Psi, y} A\right]=\frac{1}{A} \frac{d}{d y}\left[\rho_{m} \vee A \psi-\Gamma_{\psi} A \frac{d \Psi}{d y}\right]=S_{\psi}
$$

ψ	Γ_{ψ}	S_{ψ}
ω_{k}	$\rho_{m} D$	R_{k}
η_{α}	$\rho_{m} D$	0
h_{m}	$k_{m} / c p_{m}$	$-A^{-1} d\left(\sum A m_{y, k}^{\prime \prime} h_{k}\right) / d y$

where $\dot{Q}_{\text {rad }}$ is neglected and $m_{y, k}^{\prime \prime}=-\rho_{m} D\left(d \omega_{k} / d y\right)$

Inert MT without HT-1-L32($\frac{2}{20}$)

- Consider evaporation of pure water through a stagnant column of air
(2) Both water and air are at same temperature. Hence, no HT
(3) Air does not dissolve in water

(a) CONSTANT AREA MODEL
∞ state

(b) Variable area model

Two Governing equations are

$$
\frac{d}{d y}\left[N_{a, y} A\right]=\frac{d}{d y}\left[N_{v, y} A\right]=0
$$

(9) Steady state prevails. That is, water is supplied at the bottom at the evaporation rate. So, L is constant.
or,
$\dot{m}_{w}=A_{w} N_{w}=A\left(N_{v, y}+N_{a, y}\right)=$
const. But, in stagnant air, $\dot{m}_{a, w}=A N_{a, y}=A_{w} N_{a, w}=0$.
(5) There are two species only. Also, $\omega_{a}+\omega_{v}=1$.

Inert MT without HT - 2 - L32 $\frac{3}{20}$)

(1) Therefore,

$$
\begin{aligned}
\dot{m}_{w}= & \dot{m}_{v}=A\left(\rho_{m} V \omega_{v}-\rho_{m} D \frac{d \omega_{v}}{d y}\right)=A \rho_{m} V \\
\text { or } & \dot{m}_{w} \omega_{v}-\rho_{m} D A \frac{d \omega_{v}}{d y}=\dot{m}_{w} \\
\text { or } & -\frac{d \omega_{v}}{1-\omega_{v}}=\left(\frac{\dot{m}_{w}}{\rho_{m} D}\right) \frac{d y}{A}
\end{aligned}
$$

(2) If $\mathrm{A}=A_{w}=$ const , then $N_{w}=\dot{m}_{w} / A_{w}$ and integration from $y=0$ to $y=L$ gives

$$
\begin{aligned}
N_{w}= & \left(\frac{\rho_{m} D}{L}\right) \ln \left(\frac{1-\omega_{v, \infty}}{1-\omega_{v, w}}\right)=g_{m}^{*} \ln \left(1+B_{m}\right) \text { where } \\
& B_{m}=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1} \text { and } g_{m}^{*}=\frac{\rho_{m} D}{L}\left(\frac{\mathrm{~kg}}{m^{2}-\mathrm{s}}\right)
\end{aligned}
$$

Inert MT without HT - 3 - L32 $\left(\frac{4}{20}\right)$

(1) For a spherical droplet evaporation in stagnant surroundings, $A=4 \pi r^{2}$. Then,

$$
-\frac{d \omega_{v}}{1-\omega_{v}}=\left(\frac{\dot{m}_{w}}{\rho_{m} D}\right) \frac{d r}{4 \pi r^{2}}
$$

(2) Integration from $r=r_{w}$ (droplet radius) to $r=\infty$ gives

$$
\ln \left(\frac{1-\omega_{v, \infty}}{1-\omega_{v, w}}\right)=\frac{\dot{m}_{w}}{4 \pi \rho_{m} D r_{w}}
$$

© Hence

$$
\begin{gathered}
N_{w}=\frac{\dot{m}_{w}}{4 \pi r_{w}^{2}}=\left(\frac{\rho_{m} D}{r_{w}}\right) \ln \left(\frac{1-\omega_{v, \infty}}{1-\omega_{v, w}}\right)=g_{m}^{*} \ln \left(1+B_{m}\right) \text { where } \\
B_{m}=\frac{\omega_{v, \infty}-\omega_{v, w}}{\omega_{v, w}-1} \text { and } g_{m}^{*}=\frac{\rho_{m} D}{r_{w}}\left(\frac{\mathrm{~kg}}{m^{2}-\mathrm{s}}\right)
\end{gathered}
$$

Comments - L32 $\left(\frac{5}{20}\right)$

(1) Both results show that in diffusion mass transfer $N_{w}=g_{m}^{*} \ln \left(1+B_{m}\right)$
(2) But, as $B_{m} \rightarrow 0, \ln \left(1+B_{m}\right) \rightarrow B_{m}$ for both $\pm B_{m}$. Thus, the linear relation $N_{w}=g \times B_{m}$ holds only for very small B_{m} or N_{w}.
(3) Negative B_{m} implies Condensation
(9) Therefore, in general, we may write

$$
N_{w}=g \times B_{m} \quad \text { with } \quad \frac{g}{g_{m}^{*}}=\frac{\ln \left(1+B_{m}\right)}{B_{m}}
$$

where g_{m}^{*} is value of g when $\left|B_{m}\right| \rightarrow 0$
(0) This result has significance even in Conv MT

Inert MT with HT - 1 - L32 $\left(\frac{6}{20}\right)$

(1) Let the air in the previous example be at $T_{\infty}>T_{w}$ where T_{w} is the temperature of the water surface. Then, under steady state, besides species conservation, energy eqn is

$$
\frac{d\left(N_{v, y} h_{m} A\right)}{d y}=\frac{d}{d y}\left[A\left(k_{m} \frac{d T}{d y}+\rho_{m} D\left\{\frac{d \omega_{v}}{d y} h_{v}+\frac{d \omega_{a}}{d y} h_{a}\right\}\right)\right]
$$

where $h_{m}=\omega_{v} h_{v}+\left(1-\omega_{v}\right) h_{a}, h_{v}=c_{p, v}\left(T-T_{r e f}\right)+\lambda_{\text {ref }}$, $h_{a}=c_{p, a}\left(T-T_{r e f}\right)$ and $c_{p, m}=\omega_{v} c_{p, v}+\left(1-\omega_{v}\right) c_{p, a} . \lambda_{\text {ref }}$ is latent heat at $T_{\text {ref }}$.
(2) Further,

$$
k_{m} \frac{d T}{d y}=\rho_{m} \alpha_{m} c_{p, m} \frac{d T}{d y}=\rho_{m} \alpha_{m}\left[\omega_{v} \frac{d h_{v}}{d y}+\omega_{a} \frac{d h_{a}}{d y}\right]
$$

Inert MT with HT - 2 - L32 $\left(\frac{7}{20}\right)$

Substitution gives

$$
\begin{aligned}
\frac{d\left(N_{v, y} h_{m} A\right)}{d y} & =\frac{d}{d y}\left[\rho_{m} A \alpha_{m}\left(\omega_{v} \frac{d h_{v}}{d y}+\omega_{a} \frac{d h_{a}}{d y}\right)\right] \\
& +\frac{d}{d y}\left[\rho_{m} A D\left(\frac{d \omega_{v}}{d y} h_{v}+\frac{d \omega_{a}}{d y} h_{a}\right)\right]
\end{aligned}
$$

We now define Schmidt No (Sc) $\equiv \nu / D$ and Lewis No (Le) $\equiv \mathrm{Pr} / \mathrm{Sc}=\mathrm{D} / \alpha$. For gaseous mixtures, $\mathrm{Le} \simeq 1$ assumption (or, $\mathbf{D}=\alpha$) is routinely made. Then

$$
\begin{aligned}
\frac{d\left(N_{v, y} h_{m} A\right)}{d y} & =\frac{d}{d y}\left[\Gamma_{m, h} A\left\{\frac{d}{d y}\left(\omega_{v} h_{v}+\omega_{a} h_{a}\right)\right\}\right] \\
& =\frac{d}{d y}\left[\Gamma_{m, h} A \frac{d h_{m}}{d y}\right]
\end{aligned}
$$

where $\Gamma_{m, h}=\rho_{m} \boldsymbol{D}=\rho_{m} \alpha_{m}$

Inert MT with HT - 3 - L32 $\left(\frac{8}{20}\right)$

(1) Now, from species conservation, $N_{v, y}=N_{w}$. Hence, the last result can also be written as

$$
\frac{d}{d y}\left[A\left\{N_{w}\left(h_{m}-h_{m, T}\right)-\Gamma_{m, h} \frac{d}{d y}\left(h_{m}-h_{m, T}\right)\right\}\right]=0
$$

where $h_{m, T}=c_{p, l}\left(T_{T}-T_{r e f}\right)$ is the specific enthalpy of the make-up water deep inside the neighbouring phase. $c_{p, l}$ is liquid specific heat. This is again an eqn in conserved property $\left(h_{m}-h_{m, T}\right)$
(2) Integration as before gives

$$
\begin{gathered}
N_{w}=g_{m h}^{*} \ln \left[\frac{h_{m, \infty}-h_{m, T}}{h_{m, w}-h_{m, T}}\right]=g_{m h}^{*} \ln \left(1+B_{h}\right) \text { where } \\
B_{h}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{m, T}} \text { and } g_{m h}^{*}=\frac{\Gamma_{m h}}{r_{w}} \text { or } \frac{\Gamma_{m h}}{L}
\end{gathered}
$$

Comments - 1 - L32 $\left(\frac{9}{20}\right)$

(1) Because Le $=1, \Gamma_{m h}=\Gamma_{m}=\Gamma_{h}$. Hence,

$$
B_{h}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{m, T}}=B_{m}=\frac{\omega_{V, \infty}-\omega_{v, w}}{\omega_{v, w}-1}
$$

(2) This relation provides the important link between $\omega_{v, w}$ and T_{w} because $h_{m, w}=h_{v, w} \omega_{v, w}+h_{a, w}\left(1-\omega_{v, w}\right)$. Hence,taking $T_{\text {ref }}=0$,

$$
h_{m, w}=c_{p, a} T_{w}+\left[\left(c_{p, v}-c_{p, a}\right) T_{w}+\lambda_{r e f}\right] \omega_{v, w}
$$

(3) Hence, for given T_{∞} and T_{T}, the $B_{m}=B_{h}$ relation will iteratively give $\omega_{v, w} \sim T_{w}$. If $\mathrm{Le}=1$ assumption is correct, this relation must be same as the saturation equilibrium relationship corresponding to $\mathrm{RH}=100 \%$ of the psychrometric chart .

Comments-2-L32 $\left(\frac{10}{20}\right)$

For air-water vapour mixture, saturation condition is correlated as

$$
\begin{aligned}
\omega_{v, w} & \simeq 3.416 \times 10^{-3}+\left(2.7308 \times 10^{-4}\right) T_{w}+\left(1.372 \times 10^{-5}\right) T_{w}^{2} \\
& +\left(8.2516 \times 10^{-8}\right) T_{w}^{3}-\left(6.9092 \times 10^{-9}\right) T_{w}^{4} \\
& +\left(3.5313 \times 10^{-10}\right) T_{w}^{5}-\left(3.7037 \times 10^{-12}\right) T_{w}^{6} \\
& +\left(6.1923 \times 10^{-15}\right) T_{w}^{7}+\left(9.9349 \times 10^{-17}\right) T_{w}^{8}
\end{aligned}
$$

where $-20<T_{w}(C)<100$.
For the evaporating fuel, $\omega_{v, w} \sim T_{w}$ relation must be determined from Clausius-Clapeyron equation. Thus

$$
\begin{aligned}
\omega_{v, w} & =\left(\frac{p_{\text {sat }}\left(T_{w}\right)}{p_{\text {tot }}}\right) \times\left(\frac{M_{v}}{M_{\text {mix }}}\right)=x_{v, w}\left(\frac{M_{v}}{M_{\text {mix }}}\right) \\
x_{v, w} & =\exp \left\{-\frac{h_{f g}}{R_{g}}\left(\frac{1}{T_{w}}-\frac{1}{T_{b p}}\right)\right\} \rightarrow T_{b p} \equiv \text { (Boiling Point) }
\end{aligned}
$$

MT with HT and SCR - 1-L32 ($\frac{11}{20}$)

(1) Consider highly volatile liquid fuel that burns in the considered phase according to Simple Chemical Reaction (SCR)

1 kg of fuel $+r_{s t} \mathrm{~kg}$ of $O_{2}=\left(1+r_{s t}\right) \mathrm{kg}$ of products where $r_{s t}$ is stoichiometric ratio for the fuel.
(2) We have 3 species, fuel, oxygen and products. Hence,

$$
\begin{aligned}
\frac{d}{d y}\left[A\left(N_{w} \omega_{f u}-\rho_{m} D \frac{d \omega_{f u}}{d y}\right)\right] & =-\left|R_{f u}\right| A \\
\frac{d}{d y}\left[A\left(N_{w} \omega_{O_{2}}-\rho_{m} D \frac{d \omega_{O_{2}}}{d y}\right)\right] & =-\left|R_{O_{2}}\right| A \\
\frac{d}{d y}\left[A\left(N_{w} \omega_{p r}-\rho_{m} D \frac{d \omega_{p r}}{d y}\right)\right] & =R_{p r} A
\end{aligned}
$$

MT with HT and SCR - 2 - L32 ($\frac{12}{20}$)

(1) Adding the 3 eqns, we retrieve bulk mass conservarion. Hence, $\sum_{k} R_{k}=0$ and $\sum_{k} \dot{m}_{y, k}^{\prime \prime}=0$
(2) Thus, SCR implies $R_{O_{2}}=r_{s t} R_{f u}, R_{p r}=-\left(1+r_{s t}\right) R_{f u}$ and $\dot{m}_{O_{2}}^{\prime \prime}=r_{s t} \dot{m}_{f u}^{\prime \prime}, \dot{m}_{p r}^{\prime \prime}=-\left(1+r_{s t}\right) \dot{m}_{f u}^{\prime \prime}$
(3) Further dividing $2 n d$ eqn by $r_{s t}$ and third eqn by $\left(1+r_{s t}\right)$, and subtracting from 1st eqn, it follows that

$$
\begin{aligned}
& \frac{d}{d y}\left[A\left(N_{w} \Phi-\Gamma_{m} \frac{d \Phi}{d y}\right)\right]=0 \\
& \Phi=\omega_{f u}-\frac{\omega_{O_{2}}}{r_{s t}}=\omega_{f u}+\frac{\omega_{p r}}{1+r_{s t}} \quad \text { Conserved Property } \\
& \text { soln : } N_{w}=g_{m}^{*} \ln \left[\frac{\Phi_{\infty}-\Phi_{T}}{\Phi_{w}-\Phi_{T}}\right]=g_{m}^{*} \ln \left(1+B_{m}\right) \text { where } \\
& B_{m}=\frac{\Phi_{\infty}-\Phi_{w}}{\Phi_{w}-\Phi_{T}} \quad \text { and } \quad g_{m}^{*}=\frac{\Gamma_{m}}{r_{w}} \text { or } \frac{\Gamma_{m}}{L}
\end{aligned}
$$

MT with HT and SCR - 3 - L32 $\left(\frac{13}{20}\right)$

(1) The energy eqn will read as

$$
\frac{d}{d y}\left[A\left(N_{w} h_{m}-k_{m} \frac{d T}{d y}\right)\right]=-\frac{d A \sum_{k}\left(\dot{m}_{y, k}^{\prime \prime} h_{k}\right)}{d y}=(\text { RHS })
$$

$$
\text { where } h_{k}=h_{f, k}^{0}+c p_{k}\left(T-T_{r e f}\right)=h_{f, k}^{0}+c p_{k} \Delta T
$$

(2) Hence, making use of definitions of Φ

$$
\begin{aligned}
h_{m} & =\sum \omega_{k} h_{k}=\sum \omega_{k} h_{f, k}^{0}+\Delta T \sum c_{p, k} \omega_{k} \\
& =\omega_{f u} h_{f, f u}^{0}+\omega_{O_{2}} h_{f, O_{2}}^{0}+\omega_{p r} h_{f, p r}^{0}+c_{p m} \Delta T \\
& =\omega_{f u} h_{f, f u}^{0}+\omega_{O_{2}}\left\{h_{f, O_{2}}^{0}-\left(\frac{1+r_{s t}}{r_{s t}}\right) h_{f, p r}^{0}\right\}+c_{p m} \Delta T \\
& =\omega_{f u} h_{f, f u}^{0}+\omega_{f u} r_{s t}\left\{h_{f, O_{2}}^{0}-\left(\frac{1+r_{s t}}{r_{s t}}\right) h_{f, p r}^{0}\right\}+c_{p m} \Delta T \\
& =\omega_{f u}\left\{h_{f, f u}^{0}+r_{s t} h_{f, O_{2}}^{0}-\left(1+r_{s t}\right) h_{f, p r}^{0}\right\}+c_{p m} \Delta T \\
& =\omega_{f u} \Delta h_{c}+c_{p m}\left(T-T_{r e f}\right)
\end{aligned}
$$

MT with HT and SCR - 4 - L32($\frac{14}{20}$)

 We now consider the RHS. Then$$
\begin{array}{r}
-\sum_{k}\left(\dot{m}_{y, k}^{\prime \prime} h_{k}\right)=\left(h_{f u}^{0}+c_{p, f u} \Delta T\right) \rho_{m} D \frac{d \omega_{f u}}{d y}+ \\
\left(h_{O_{2}}^{0}+c_{p, O_{2}} \Delta T\right) \rho_{m} D \frac{d \omega_{O_{2}}}{d y}+\left(h_{p r}^{0}+c_{p, p r} \Delta T\right) \rho_{m} D \frac{d \omega_{p r}}{d y}
\end{array}
$$

If we now assume that $c_{p, k}=c_{p m}$ (equal specific heats) and use stoichiometric relations $\omega_{O_{2}}=r_{s t} \omega_{f u}$ and $\omega_{p r}=-\left(1+r_{s t}\right) \omega_{f u}$

$$
-\sum_{k}\left(\dot{m}_{y, k}^{\prime \prime} h_{k}\right)=\Delta h_{c} \rho_{m} D \frac{d \omega_{f u}}{d y}
$$

because $c_{p m} \Delta T \sum_{k} D d \omega_{k} / d y=0$. Also, from the previous slide

$$
c_{p m} \frac{d T}{d y}=\frac{d h_{m}}{d y}-\Delta h_{c} \frac{d \omega_{f u}}{d y}
$$

MT with HT and SCR - 5 - L32 $\left(\frac{15}{20}\right)$

Hence, the energy Eqn will read as

$$
\frac{d}{d y}\left[A\left\{N_{w} h_{m}-\frac{k_{m}}{c_{p m}}\left(\frac{d h_{m}}{d y}-\Delta h_{c} \frac{d \omega_{f u}}{d y}\right)-\Delta h_{c} \rho_{m} D \frac{d \omega_{f u}}{d y}\right\}\right]=0
$$

Noting that $k_{m} / c_{p m}=\rho_{m} \alpha_{m}=\Gamma_{h}$ and assuming $\alpha_{m}=D$ (or $\mathrm{Le}=1$), the above eqn can be rearranged so that the Burning flux can be calculated from

$$
\begin{gathered}
\frac{d}{d y}\left[A\left(N_{w} h_{m}-\Gamma_{h} \frac{d h_{m}}{d y}\right)\right]=0 \\
N_{w}=g_{m h}^{*} \ln \left[\frac{h_{m, \infty}-h_{m, T}}{h_{m, w}-h_{m, T}}\right]=g_{m h}^{*} \ln \left(1+B_{h}\right) \text { where } \\
\\
B_{h}=\frac{h_{m, \infty}-h_{m, w}}{h_{m, w}-h_{m, T}} \text { and } g_{m h}^{*}=\frac{\Gamma_{m h}}{r_{w}} \text { or } \frac{\Gamma_{m h}}{L}
\end{gathered}
$$

Comments - L32 ($\frac{16}{20}$)

(1) In general, for an SCR ,
(1) $h_{f u}=c_{p m} \Delta T+\omega_{f u} \Delta h_{c}, h_{O_{2}}=c_{p m} \Delta T$ and $h_{p r}=c_{p m} \Delta T$
(2) $h_{f u}=c_{p m} \Delta T, h_{O_{2}}=c_{p m} \Delta T+\frac{\omega_{O_{2}}}{r_{s t}} \Delta h_{c}$ and $h_{p r}=c_{p m} \Delta T$
(3) $h_{f u}=c_{p m} \Delta T, h_{O_{2}}=c_{p m} \Delta T$ and $h_{p r}=c_{p m} \Delta T-\frac{\omega_{p r}}{1+r_{s t}} \Delta h_{c}$
(2) For a liquid fuel burning in air, we choose 2nd type

$$
h_{m}=\sum_{k} \omega_{k} h_{k}=c_{p, m}\left(T-T_{r e f}\right)+\frac{\omega_{O_{2}}}{r_{s t}} \Delta h_{c}
$$

. where $T_{\text {ref }}=T_{w}$. Then, B_{h} can be calculated from

$$
B_{h}=\frac{c_{p m}\left(T_{\infty}-T_{w}\right)+\Delta h_{c}\left(\omega_{O_{2}, \infty}-\omega_{O_{2}, w}\right) / r_{s t}}{\Delta h_{c} \omega_{O_{2}, w} / r_{s t}-c_{p, l}\left(T_{T}-T_{w}\right)}
$$

where $\omega_{O_{2}, T}=0$ and T_{T} is known or knowable
(3) If $T_{w}=T_{b p}$ (boiling point) then $\omega_{O_{2}, w}=0$
(9) If $T_{w} \neq T_{b p}$ then $\omega_{O_{2}, w} \sim T_{w}$ is iteratively determined from $B_{m}=B_{h}$.

MT with HT and ACR - 1 - L32 $\left(\frac{17}{20}\right)$

(1) Here, the governing eqn is

$$
\frac{d}{d y}\left[A\left(N_{w} \eta_{\alpha}-\Gamma_{h} \frac{d \eta_{\alpha}}{d y}\right)\right]=0
$$

where η_{α} is a conserved property with $\alpha=\mathrm{C}, \mathrm{H}, \mathrm{N}$ or O .
(2) This eqn is often used for solids combustion or ablation.
(3) Thus, consider burning of Graphite (C^{*}) at high temperature ($T_{w} \sim 1950 \mathrm{~K}$). Then the reaction mechanism is
R1: $C^{*}+0.5 O_{2}=C O\left(K_{p}=\infty\right)$,
R2: $C^{*}+\mathrm{CO}_{2}=2 \mathrm{CO}\left(K_{p}=4000\right)$,
R3: $C^{*}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}+\mathrm{H}_{2}\left(K_{p}=1230\right)$,
R4: $C^{*}+2 H_{2}=C H_{4}\left(K_{p}=1 / 790\right)$,
R5: $\mathrm{CO}_{2}=\mathrm{CO}+0.5 \mathrm{O}_{2}\left(K_{p}=1 / 1800\right)$,
R6: $H_{2} \mathrm{O}=\mathrm{H}_{2}+0.5 \mathrm{O}_{2}\left(K_{p}=1 / 40,000\right)$

MT with HT and ACR - 2 - L32 $\left(\frac{18}{20}\right)$

(1) Let the ∞ state comprise complete products $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and N_{2} only
(2) Noting the equilibrium constants K_{p} for each reaction, it can be shown that in the considered phase, CH_{4} cannot survive in appreciable magnitudes. Hence, it will comprise CO_{2}, H_{2}, CO and $\mathrm{H}_{2} \mathrm{O}$ only.
(3) Similarly, in the w-state, only CO and H_{2} will survive
(9) Since, species change in different stets, it is best to define

$$
\begin{aligned}
& \eta_{C}=\omega_{C^{*}}+\frac{12}{44} \omega_{\mathrm{CO}_{2}}+\frac{12}{28} \omega_{\mathrm{CO}}, \\
& \eta_{H}=\omega_{\mathrm{H}_{2}}+\frac{2}{18} \omega_{\mathrm{H}_{2} \mathrm{O}}, \\
& \eta_{O}=\frac{32}{44} \omega_{\mathrm{CO}_{2}}+\frac{16}{28} \omega_{\mathrm{CO}}+\frac{16}{18} \omega_{\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

(6) Thus, we have 3 eqns in η_{C}, η_{O} and η_{H}.

MT with HT and ACR - 3 - L32 $\left(\frac{19}{20}\right)$

(1) We need to solve for any one element because the conserved property solution are same for each η_{α}. Difficulty arises in applying BCs
(2) Since mass-fractions of CO and H_{2} are not known in the w-state, we define a composite variable

$$
\Phi \equiv \eta_{C}-\frac{3}{4} \eta_{O}=\omega_{C}-\frac{3}{11} \omega_{C_{O}}-\frac{2}{3} \omega_{H_{2} \mathrm{O}}
$$

(3) Then,

$$
\begin{aligned}
\Phi_{w} & =\left(\eta_{C}-\frac{3}{4} \eta_{O}\right)_{w}=0, \quad \Phi_{T}=1-0-0 \\
\Phi_{\infty} & =0-\frac{3}{11} \omega_{C O_{2}, \infty}-\frac{2}{3} \omega_{H_{2} O, \infty} \\
N_{w} & =g_{m}^{*} \ln \left(1+B_{m}\right) \rightarrow B_{m}=\frac{3}{11} \omega_{C O_{2, \infty}}+\frac{2}{3} \omega_{H_{2} O, \infty}
\end{aligned}
$$

Summary - L32 $\left(\frac{20}{20}\right)$

(1) Thus, in all types of mass transfer, we have shown that MT is governed by conserved property Eqn

$$
\begin{aligned}
& \frac{d}{d y}\left[A\left(N_{w} \psi-\Gamma \frac{d \psi}{d y}\right)\right]=0 \text { where } A=\text { const or }=4 \pi r^{2} \\
& N_{w}=g \times B \text { with } \frac{g}{g^{*}}=\frac{\ln (1+B)}{B} \rightarrow B=\frac{\Psi_{\infty}-\Psi_{w}}{\Psi_{w}-\Psi_{T}}
\end{aligned}
$$

where $g^{*}=\left(\Gamma / r_{w}\right.$ or $\left.\Gamma / L\right)$ is value of g when $|B| \rightarrow 0$
(2) In Inert MT without $\mathrm{HT}, \Psi=\omega_{\mathrm{v}}$ and $\Gamma=\rho_{m} D$
(3) In Inert MT with HT, $\Psi=\omega_{v}$ and h_{m} and
$\Gamma_{m h}=\rho_{m} \boldsymbol{D}=\rho_{m} \alpha_{m}$ with $\mathrm{Le}=1$
(9) In MT with SCR , $\Psi=$ appropriate Φ and h_{m} and $\Gamma_{m h}=\rho_{m} D=\rho_{m} \alpha_{m}$ with Le $=1$ and equal $c_{p, k}=c_{p m}$
(3) In MT with ACR , $\Psi=$ appropriate Φ and $\Gamma_{m}=\rho_{m} D$

