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LECTURE-32 STEFAN FLOW MODEL

1 Inert mass transfer without heat transfer
2 Inert mass transfer with heat transfer
3 Mass transfer with heat transfer and simple chemical

reaction ( SCR )
4 Mass transfer with heat transfer and arbitrary chemical

reaction ( ACR )
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Reminder of Gov Eqns - L32( 1
20)

In the Stefan flow model, under steady state

1
A

d
dy

[NΨ,y A] =
1
A

d
dy

[
ρm v A Ψ− ΓΨ A

d Ψ

dy

]
= SΨ

Ψ ΓΨ SΨ

ωk ρm D Rk

ηα ρm D 0
hm km/cpm - A−1 d(

∑
Am

′′

y ,k hk)/dy

where Q̇rad is neglected and m
′′

y ,k = −ρm D (dωk/dy)

() April 1, 2011 3 / 22



Inert MT without HT - 1 - L32( 2
20)

1 Consider evaporation of
pure water through a
stagnant column of air

2 Both water and air are at
same temperature. Hence,
no HT

3 Air does not dissolve in
water

4 Steady state prevails . That
is, water is supplied at the
bottom at the evaporation
rate . So, L is constant.

5 There are two species only.
Air ( a ) - water vapour ( v)
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(  a  )  CONSTANT AREA  MODEL                                                            ( b )  VARIABLE  AREA  MODEL

Two Governing equations are

d
dy

[Na,y A] =
d
dy

[Nv ,y A] = 0

or,
ṁw = Aw Nw = A (Nv ,y + Na,y) =
const. But, in stagnant air,
ṁa,w = A Na,y = Aw Na,w = 0.
Also, ωa + ωv = 1.
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Inert MT without HT - 2 - L32( 3
20)

1 Therefore,

ṁw = ṁv = A (ρm V ωv − ρm D
d ωv

dy
) = A ρm V

or ṁw ωv − ρm D A
d ωv

dy
= ṁw

or − d ωv

1− ωv
= (

ṁw

ρm D
)

dy
A

2 If A = Aw = const , then Nw = ṁw/Aw and integration from
y = 0 to y = L gives

Nw = (
ρm D

L
) ln (

1− ωv ,∞

1− ωv ,w
) = g∗m ln (1 + Bm) where

Bm =
ωv ,∞ − ωv ,w

ωv ,w − 1
and g∗m =

ρm D
L

(
kg

m2 − s
)
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Inert MT without HT - 3 - L32( 4
20)

1 For a spherical droplet evaporation in stagnant
surroundings, A = 4π r 2 . Then,

− d ωv

1− ωv
= (

ṁw

ρm D
)

dr
4 π r 2

2 Integration from r = rw ( droplet radius ) to r = ∞ gives

ln (
1− ωv ,∞

1− ωv ,w
) =

ṁw

4 πρm D rw

3 Hence

Nw =
ṁw

4 π r 2
w

= (
ρm D

rw
) ln (

1− ωv ,∞

1− ωv ,w
) = g∗m ln (1 + Bm) where

Bm =
ωv ,∞ − ωv ,w

ωv ,w − 1
and g∗m =

ρm D
rw

(
kg

m2 − s
)
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Comments - L32( 5
20)

1 Both results show that in diffusion mass transfer
Nw = g∗m ln (1 + Bm)

2 But, as Bm → 0, ln (1 + Bm) → Bm for both ± Bm.
Thus, the linear relation Nw = g × Bm holds only for very
small Bm or Nw .

3 Negative Bm implies Condensation
4 Therefore, in general, we may write

Nw = g × Bm with
g

g∗m
=

ln (1 + Bm)

Bm

where g∗m is value of g when |Bm| → 0
5 This result has significance even in Conv MT
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Inert MT with HT - 1 - L32( 6
20)

1 Let the air in the previous example be at T∞ > Tw where Tw

is the temperature of the water surface. Then, under steady
state, besides species conservation, energy eqn is

d(Nv ,y hmA)

dy
=

d
dy

[
A(km

dT
dy

+ ρm D
{

dωv

dy
hv +

dωa

dy
ha

}
)

]
where hm = ωv hv + (1− ωv) ha, hv = cp,v (T − Tref ) + λref ,
ha = cp,a (T − Tref ) and cp,m = ωv cp,v + (1− ωv) cp,a. λref is
latent heat at Tref .

2 Further,

km
dT
dy

= ρm αm cp,m
dT
dy

= ρm αm

[
ωv

d hv

dy
+ ωa

d ha

dy

]
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Inert MT with HT - 2 - L32( 7
20)

Substitution gives

d(Nv ,y hmA)

dy
=

d
dy

[
ρm A αm (ωv

d hv

dy
+ ωa

d ha

dy
)

]
+

d
dy

[
ρm A D (

dωv

dy
hv +

dωa

dy
ha)

]
We now define Schmidt No ( Sc ) ≡ ν/D and
Lewis No ( Le ) ≡ Pr/Sc = D/α . For gaseous mixtures , Le ' 1
assumption ( or, D = α ) is routinely made. Then

d(Nv ,y hmA)

dy
=

d
dy

[
Γm,h A

{
d
dy

(ωv hv + ωa ha)

}]
=

d
dy

[
Γm,h A

d hm

dy

]
where Γm,h = ρm D = ρm αm
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Inert MT with HT - 3 - L32( 8
20)

1 Now, from species conservation, Nv ,y = Nw . Hence, the last
result can also be written as

d
dy

[
A

{
Nw (hm − hm,T )− Γm,h

d
dy

(hm − hm,T )

}]
= 0

where hm,T = cp,l (TT − Tref ) is the specific enthalpy of the
make-up water deep inside the neighbouring phase. cp,l is
liquid specific heat. This is again an eqn in conserved
property (hm − hm,T )

2 Integration as before gives

Nw = g∗mh ln
[

hm,∞ − hm,T

hm,w − hm,T

]
= g∗mh ln (1 + Bh) where

Bh =
hm,∞ − hm,w

hm,w − hm,T
and g∗mh =

Γmh

rw
or

Γmh

L
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Comments - 1 - L32( 9
20)

1 Because Le = 1, Γmh = Γm = Γh. Hence,

Bh =
hm,∞ − hm,w

hm,w − hm,T
= Bm =

ωv ,∞ − ωv ,w

ωv ,w − 1

2 This relation provides the important link between ωv ,w and
Tw because hm,w = hv ,w ωv ,w + ha,w (1− ωv ,w). Hence,taking
Tref = 0,

hm,w = cp,a Tw + [(cp,v − cp,a) Tw + λref ] ωv ,w

3 Hence, for given T∞ and TT , the Bm = Bh relation will
iteratively give ωv ,w ∼ Tw . If Le = 1 assumption is correct,
this relation must be same as the saturation equilibrium
relationship corresponding to RH = 100 % of the
psychrometric chart .
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Comments - 2 - L32( 10
20)

For air-water vapour mixture, saturation condition is correlated
as

ωv ,w ' 3.416× 10−3 + (2.7308× 10−4) Tw + (1.372× 10−5) T 2
w

+ (8.2516× 10−8) T 3
w − (6.9092× 10−9) T 4

w

+ (3.5313× 10−10) T 5
w − (3.7037× 10−12) T 6

w

+ (6.1923× 10−15) T 7
w + (9.9349× 10−17) T 8

w

where − 20 < Tw (C) < 100.
For the evaporating fuel, ωv ,w ∼ Tw relation must be determined
from Clausius-Clapeyron equation. Thus

ωv ,w = (
psat (Tw)

ptot
)× (

Mv

Mmix
) = xv ,w (

Mv

Mmix
)

xv ,w = exp
{
−

hfg

Rg
(

1
Tw
− 1

Tbp
)

}
→ Tbp ≡ (Boiling Point)
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MT with HT and SCR - 1 - L32( 11
20)

1 Consider highly volatile liquid fuel that burns in the
considered phase according to Simple Chemical Reaction (
SCR )

1 kg of fuel + rst kg of O2 = (1 + rst) kg of products

where rst is stoichiometric ratio for the fuel.
2 We have 3 species, fuel, oxygen and products. Hence,

d
dy

[
A (Nw ωfu − ρm D

d ωfu

dy
)

]
= − | Rfu | A

d
dy

[
A (Nw ωO2 − ρm D

d ωO2

dy
)

]
= − | RO2 | A

d
dy

[
A (Nw ωpr − ρm D

d ωpr

dy
)

]
= Rpr A
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MT with HT and SCR - 2 - L32( 12
20)

1 Adding the 3 eqns, we retrieve bulk mass conservarion.
Hence,

∑
k Rk = 0 and

∑
k ṁ

′′

y ,k = 0
2 Thus, SCR implies RO2 = rst Rfu, Rpr = − (1 + rst) Rfu and

ṁ
′′

O2
= rst ṁ

′′

fu, ṁ
′′
pr = − (1 + rst) ṁ

′′

fu
3 Further dividing 2nd eqn by rst and third eqn by (1 + rst ),

and subtracting from 1st eqn, it follows that

d
dy

[
A (Nw Φ− Γm

d Φ

dy
)

]
= 0

Φ = ωfu −
ωO2

rst
= ωfu +

ωpr

1 + rst
Conserved Property

soln : Nw = g∗m ln
[
Φ∞ − ΦT

Φw − ΦT

]
= g∗m ln (1 + Bm) where

Bm =
Φ∞ − Φw

Φw − ΦT
and g∗m =

Γm

rw
or

Γm

L
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MT with HT and SCR - 3 - L32( 13
20)

1 The energy eqn will read as

d
dy

[
A (Nw hm − km

d T
dy

)

]
= −

d A
∑

k (ṁ
′′

y ,k hk)

dy
= (RHS)

where hk = h0
f ,k + cpk (T − Tref ) = h0

f ,k + cpk ∆T .
2 Hence, making use of definitions of Φ

hm =
∑

ωk hk =
∑

ωk h0
f ,k + ∆T

∑
cp,k ωk

= ωfu h0
f ,fu + ωO2 h0

f ,O2
+ ωpr h0

f ,pr + cpm ∆T

= ωfu h0
f ,fu + ωO2

{
h0

f ,O2
− (

1 + rst

rst
) h0

f ,pr

}
+ cpm ∆T

= ωfu h0
f ,fu + ωfu rst

{
h0

f ,O2
− (

1 + rst

rst
) h0

f ,pr

}
+ cpm ∆T

= ωfu
{

h0
f ,fu + rst h0

f ,O2
− (1 + rst) h0

f ,pr

}
+ cpm ∆T

= ωfu ∆hc + cpm (T − Tref )
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MT with HT and SCR - 4 - L32( 14
20)

We now consider the RHS. Then

−
∑

k

(ṁ
′′

y ,k hk) = (h0
fu + cp,fu ∆T ) ρm D

d ωfu

dy
+

(h0
O2

+ cp,O2 ∆T ) ρm D
d ωO2

dy
+ (h0

pr + cp,pr ∆T ) ρm D
d ωpr

dy

If we now assume that cp,k = cpm ( equal specific heats ) and
use stoichiometric relations ωO2 = rst ωfu and ωpr = − (1 + rst) ωfu

−
∑

k

(ṁ
′′

y ,k hk) = ∆hc ρm D
d ωfu

dy

because cpm ∆T
∑

k D d ωk/dy = 0. Also, from the previous
slide

cpm
dT
dy

=
d hm

dy
−∆hc

d ωfu

dy
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MT with HT and SCR - 5 - L32( 15
20)

Hence, the energy Eqn will read as

d
dy

[
A

{
Nw hm −

km

cpm
(
d hm

dy
−∆hc

d ωfu

dy
)−∆hc ρm D

dωfu

dy

}]
= 0

Noting that km/cpm = ρm αm = Γh and
assuming αm = D ( or Le = 1 ) , the above eqn can be
rearranged so that the Burning flux can be calculated from

d
dy

[
A (Nw hm − Γh

d hm

dy
)

]
= 0

Nw = g∗mh ln
[

hm,∞ − hm,T

hm,w − hm,T

]
= g∗mh ln (1 + Bh) where

Bh =
hm,∞ − hm,w

hm,w − hm,T
and g∗mh =

Γmh

rw
or

Γmh

L

() April 1, 2011 17 / 22



Comments - L32( 16
20)

1 In general, for an SCR ,
1 hfu = cpm ∆T + ωfu ∆hc , hO2

= cpm ∆T and hpr = cpm ∆T
2 hfu = cpm ∆T , hO2

= cpm ∆T +
ωO2
rst

∆hc and hpr = cpm ∆T
3 hfu = cpm ∆T , hO2

= cpm ∆T and hpr = cpm ∆T − ωpr
1+rst

∆hc

2 For a liquid fuel burning in air, we choose 2nd type

hm =
∑

k

ωk hk = cp,m (T − Tref ) +
ωO2

rst
∆hc

. where Tref = Tw . Then, Bh can be calculated from

Bh =
cpm (T∞ − Tw) + ∆hc (ωO2,∞ − ωO2,w)/rst

∆hc ωO2,w/rst − cp,l (TT − Tw)

where ωO2,T = 0 and TT is known or knowable
3 If Tw = Tbp ( boiling point ) then ωO2,w = 0
4 If Tw 6= Tbp then ωO2,w ∼ Tw is iteratively determined from

Bm = Bh.
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MT with HT and ACR - 1 - L32( 17
20)

1 Here, the governing eqn is

d
dy

[
A (Nw ηα − Γh

d ηα

dy
)

]
= 0

where ηα is a conserved property with α = C, H, N or O.
2 This eqn is often used for solids combustion or ablation .
3 Thus, consider burning of Graphite ( C∗ ) at high

temperature ( Tw ∼ 1950 K ). Then the reaction mechanism
is
R1 : C∗ + 0.5 O2 = CO (Kp = ∞),
R2 : C∗ + CO2 = 2 CO (Kp = 4000),
R3 : C∗ + H2O = CO + H2 (Kp = 1230),
R4 : C∗ + 2 H2 = CH4 (Kp = 1/790),
R5 : CO2 = CO + 0.5 O2 (Kp = 1/1800),
R6 : H2O = H2 + 0.5 O2 (Kp = 1/40, 000)
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MT with HT and ACR - 2 - L32( 18
20)

1 Let the ∞ state comprise complete products CO2, H2O and
N2 only

2 Noting the equilibrium constants Kp for each reaction, it can
be shown that in the considered phase, CH4 cannot survive
in appreciable magnitudes . Hence, it will comprise CO2,
H2, CO and H2O only.

3 Similarly, in the w-state, only CO and H2 will survive
4 Since, species change in different stets, it is best to define

ηC = ωC∗ +
12
44

ωCO2 +
12
28

ωCO ,

ηH = ωH2 +
2

18
ωH2O ,

ηO =
32
44

ωCO2 +
16
28

ωCO +
16
18

ωH2O

5 Thus, we have 3 eqns in ηC, ηO and ηH .
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MT with HT and ACR - 3 - L32( 19
20)

1 We need to solve for any one element because the
conserved property solution are same for each ηα. Difficulty
arises in applying BCs

2 Since mass-fractions of CO and H2 are not known in the
w-state, we define a composite variable

Φ ≡ ηC −
3
4

ηO = ωC −
3

11
ωCO2 −

2
3

ωH2O

3 Then,

Φw = (ηC −
3
4

ηO)w = 0, ΦT = 1− 0− 0

Φ∞ = 0− 3
11

ωCO2,∞ −
2
3

ωH2O,∞

Nw = g∗m ln (1 + Bm) → Bm =
3

11
ωCO2,∞ +

2
3

ωH2O,∞
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Summary - L32( 20
20)

1 Thus, in all types of mass transfer, we have shown that MT
is governed by conserved property Eqn

d
dy

[
A (Nw Ψ− Γ

d Ψ

dy
)

]
= 0 where A = const or = 4 π r 2

Nw = g × B with
g
g∗

=
ln (1 + B)

B
→ B =

Ψ∞ −Ψw

Ψw −ΨT

where g∗ = (Γ/rw or Γ/L) is value of g when |B| → 0
2 In Inert MT without HT , Ψ = ωv and Γ = ρm D
3 In Inert MT with HT , Ψ = ωv and hm and

Γmh = ρm D = ρm αm with Le = 1
4 In MT with SCR , Ψ = appropriate Φ and hm and

Γmh = ρm D = ρm αm with Le = 1 and equal cp,k = cpm

5 In MT with ACR , Ψ = appropriate Φ and Γm = ρm D
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