ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-30 PREDICTION OF TURBULENT HEAT TRANSFER

LECTURE-30 PREDICTION OF TURBULENT HEAT TRANSFER

Prediction of St_x (Ext Bls)

- Use of law of the Wall
- Analogy Method
- Integral Method
- Effects of V_w and Roughness
- Prediction of Nu (Internal Flows)
 - Use of Law of the wall
 - Analogy Method

Use of Wall Law - Ext BLs - 1 L30($\frac{1}{17}$)

From lecture 28, the temperature law of the wall is written as

$$T_{\infty}^{+} = Pr_{T} \left(U_{\infty}^{+} + PF_{\infty} \right) \text{ where}$$

$$U_{\infty}^{+} = \frac{U_{\infty}}{u_{\tau}} = \frac{U_{\infty}}{\sqrt{\tau_{w}/\rho}} = \sqrt{\frac{2}{C_{f,x}}}$$

$$T_{\infty}^{+} = \frac{-(T_{\infty} - T_{w})}{q_{w}/(\rho C_{\rho} u_{\tau})} = \frac{\rho C_{\rho} U_{\infty}}{h_{x}} \times \frac{u_{\tau}}{U_{\infty}} = \frac{\sqrt{C_{f,x}/2}}{St_{x}}$$

$$St_{x} = \frac{\sqrt{C_{f,x}/2}}{Pr_{T}(\sqrt{2/C_{f,x}} + PF_{\infty})} \quad (Pr_{T} \simeq 0.9)$$

Por Pr = 1, PF_∞ = 0. Reynolds used Pr_T = 1. Hence, St_x = C_{f,x}/2 (Perfect Reynolds Analogy). For near-unity Pr, St_x ≃ (C_{f,x}/2) × Pr^{-0.4}. Hence, for zero Pr Gr, → St_x = 0.0286 Re_x^{-0.2} Pr^{-0.4}.
For rough surface, appropriate C_{f,x} and PF_∞ to be used

Analogy Method - 1 - Ext BLs - L30($\frac{2}{17}$)

Secall that $Pr_{eff} = dT^+/du^+ = (dT^+/dy^+)/(du^+/dy^+)$. Hence, using $(\tau_{tot}/\tau_w) \simeq 1 = (1 + \nu_t/\nu) (du^+/dy^+)$ gives

$$\frac{dT^+}{dy^+} = \frac{(1 + \nu_t/\nu)(du^+/dy^+)}{Pr^{-1} + (\nu_t/\nu)/Pr_T} = \left[\frac{1}{Pr} + \left(\frac{1}{du^+/dy^+} - 1\right)\frac{1}{Pr_T}\right]^{-1}$$

2 Integrating from y = 0 to ∞ , and using the 3-layer law for u^+ , and hence for (du^+/dy^+) it follows that

$$T_{sl}^{+} - 0 = Pr y_{sl}^{+} = Pr u_{sl}^{+} = 5 Pr$$

$$T_{trl}^{+} - T_{sl}^{+} = 5 Pr_{T} \ln (1 + 5 \frac{Pr}{Pr_{T}}) (y_{trl}^{+} = 30 \text{ used})$$

$$T_{\infty}^{+} - T_{trl}^{+} = 2.5 Pr_{T} \ln \left[\frac{1 + (Pr/Pr_{T}) (\delta^{+}/2.5 - 1)}{1 + 11 (Pr/Pr_{T})}\right]$$

Analogy Method - 2 - Ext BLs - L30($\frac{3}{17}$)

Adding the last 3 Eqns, it can be shown that

$$\frac{\sqrt{C_{f,x}/2}}{St_x} = 5Pr + 5Pr_T \ln(1 + 5\frac{Pr}{Pr_T}) + 2.5Pr_T \ln\left\{\frac{1 + (Pr/Pr_T)(\delta^+/2.5 - 1)}{1 + 11(Pr/Pr_T)}\right\}$$

where using the Power law,

$$\delta^+ = (rac{U_\infty^+}{8.75})^7 = (rac{\sqrt{2/C_{f,x}}}{8.75})^7$$

The $C_{f,x}$ is evaluated using Integral method of lecture 29.

Use of Int Energy Eqn - 1 - L30($\frac{4}{17}$)

• When U_{∞} and $(T_w - T_{\infty})$ vary arbitrarily with x

$$\frac{1}{U_{\infty}\left(T_{w}-T_{\infty}\right)}\frac{d}{dx}\left[\Delta_{2} U_{\infty}\left(T_{w}-T_{\infty}\right)\right]=St_{x}$$

2 For further analysis, let¹ $St_x = C Re_x^{-n}$

③ Then for const U_{∞} and $(T_w - T_{\infty})$ BL , that is flat plate

$$\frac{d \Delta_2}{dx} = St_x = C \left(\frac{U_{\infty} x}{\nu}\right)^{-n} \text{ integration gives}$$
$$\Delta_2 = \frac{C}{1-n} \left(\frac{U_{\infty}}{\nu}\right)^{-n} x^{1-n} \text{ using } \Delta_2 = 0 \text{ at } x = 0$$
$$St_x = C \left(\frac{1-n}{C} \times \frac{U_{\infty} \Delta_2}{\nu}\right)^{\frac{n}{n-1}}$$

¹Ambroke G S Sov. Phy. Tech. Phy.,vol2, p 1979, 1957

Use of Int Energy Eqn - 2 - L30($\frac{5}{17}$)

We assume validity of the last relationship regardless of the previous history of the BI. Then, IEE becomes

$$\frac{d}{dx}\left[\Delta_2 U_{\infty} \left(T_w - T_{\infty}\right)\right] = U_{\infty} (T_w - T_{\infty}) C \left(\frac{1 - n}{C} \times \frac{U_{\infty} \Delta_2}{\nu}\right)^{\frac{n}{n-1}}$$

or, integration gives

$$\Delta_2 = \frac{C \nu^n}{(1-n) U_{\infty} (T_w - T_{\infty})} \left[\int_0^x U_{\infty} (T_w - T_{\infty})^{1/(1-n)} dx \right]^{1-n}$$

2 Using $St_x \sim \Delta_2$ relation from previous slide

$$St_{x} = \frac{C \nu^{n} (T_{w} - T_{\infty})^{n/(1-n)}}{\left[\int_{0}^{x} U_{\infty} (T_{w} - T_{\infty})^{1/(1-n)} dx\right]^{n}}$$

Use of Int Energy Eqn - 3 - L30($\frac{6}{17}$)

Assuming flat plate data C = 0.0284 $Pr^{-0.4}$ and n = 0.2, expression of previous slide becomes

$$St_x = \frac{0.0284 Pr^{-0.4} \nu^{0.2} (T_w - T_\infty)^{0.25}}{\left[\int_0^x U_\infty (T_w - T_\infty)^{1.25} dx\right]^{0.2}}$$

$$\simeq 0.0295 Pr^{-0.4} Re_x^{-0.2} \left[1 - \frac{165}{St_x} \left(\frac{\nu}{U_\infty^2} \frac{dU_\infty}{dx}\right)\right]$$

These expressions give remarkably good fit to Exptl data for pr gr parameter $(\nu/U_\infty^2) (dU_\infty/dx) < 10^6$ (Crawford and Kays)

Effect of
$$v_w$$
 - 1 - L30($\frac{7}{17}$)

• For Flat Plate and $(T_w - T_\infty) = \text{const}$, Crawford and Kays show that for finite v_w ,

$$\frac{St_{x,v_w}}{St_{x,v_w=0}} = \frac{\ln(1+B_h)}{B_h} \to B_h = \frac{v_w/U_\infty}{St_{x,v_w}}$$

or $St_{x,v_w} = 0.0284 \ Pr^{-0.4} \ Re_x^{-0.2} \ \left[\frac{\ln(1+B_h)}{B_h}\right]$

2 For arbitrary variation of v_w IEE reads as

$$\frac{d \Delta_2}{dx} = St_{x,v_w} + \frac{v_w}{U_{\infty}} = St_{x,v_w} (1 + B_h) \text{ or} \\ = \left[0.0284 \ Pr^{-0.4} \ln (1 + B_h) \frac{(1 + B_h)}{B_h} \right] Re_x^{-0.2}$$

Effect of
$$v_w$$
 - 2 - L30($\frac{8}{17}$)

• For $B_h = \text{const}$, and using $\Delta_2 = 0$ at x = 0, integration give

$$Re_x^{-0.2} = 1.057 \left[0.0284 \ Pr^{-0.4} \ln \left(1 + B_h \right) rac{(1 + B_h)}{B_h}
ight]^{0.25} Re_{\Delta_2}^{-0.25}$$

2 Using $St_{x,v_w} \sim Re_x$ relation from previous slide

$$St_{x,v_w} = 0.0125 \ Pr^{-0.5} \ Re_{\Delta_2}^{-0.25} \ (1+B_h)^{0.25} \ \left[rac{\ln{(1+B_h)}}{B_h}
ight]^{1.25}$$

We assume validity of this relation even when B_h , U_∞ and $(T_w - T_\infty)$ vary arbitrarily with x (see next slide)

Effect of B_h , U_∞ and $(T_w - T_\infty)$ - L30($\frac{9}{17}$) For this case, IEE will read as

$$\frac{d}{dx} \left[\Delta_2 \ U_{\infty} \left(T_w - T_{\infty} \right) \right] = 0.0125 \ Pr^{-0.5} \ Re_{\Delta_2}^{-0.25} \ U_{\infty} \left(T_w - T_{\infty} \right) \\ \times \left[\frac{(1+B_h)}{B_h} \ln(1+B_h) \right]^{1.25}$$

Integration gives

.

$$St_{x} = 0.0284 Pr^{-0.4} \\ \times \frac{\nu^{0.2} (T_{w} - T_{\infty})^{0.25} (1 + B_{h})^{0.25} \{\ln(1 + B_{h})/B_{h}\}^{1.25}}{\left[\int_{0}^{x} U_{\infty} (T_{w} - T_{\infty})^{1.25} \{(1 + B_{h})\ln(1 + B_{h})/B_{h}\}^{1.25} dx\right]^{0.25}}$$

Crawford and Kays show remarkable good fit to experimental data and predictions using mixing length.

()

Similarity Method for TBL - L30($\frac{10}{17}$)

The governing Eqn for a Temperature TBL is

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = +\nu \frac{\partial}{\partial y} \left[b_{Pr} \frac{\partial T}{\partial y} \right]$$

where $b_{Pr} = \alpha/\nu + \alpha_t/\nu = Pr^{-1} + Pr_T^{-1} \nu_t^+$, where $Pr_T = \nu_t/\alpha_t$, $\nu^+ = \nu_t/\nu$ and ν_t is given by Prandtl's mixing length.

Using similarity variables defined in lecture 29,

$$\frac{d}{d\eta} \left(b_{Pr} \theta' \right) + f \theta' + \left(\frac{2n}{m+1} \right) f' \left(1 - \theta \right) = \frac{2x}{m+1} \left(f' \frac{d\theta}{dx} - \theta' \frac{df}{dx} \right)$$

$$m = \left(\frac{x}{U_{\infty}}\right) \frac{dU_{\infty}}{dx}, \ n = \left(\frac{x}{T_w - T_{\infty}}\right) \frac{d(T_w - T_{\infty})}{dx}, \ \theta = \frac{T_w - T_{\infty}}{T_w - T_{\infty}}$$

Iterative solution is required at each x. BCs: $\theta(0) = 0$ and $\theta(\infty) = 1$.

Wall law - Pipe Flow - 1 - L30(¹¹/₁₇)

• Writing wall-law for Pipe centerline $T_{cl}^+ = Pr_T (u_{cl}^+ + PF_{\infty}) = Pr_T (\overline{u^+} + 1.5/\kappa + PF_{\infty})$ where

$$T_{cl}^{+} = \frac{T_{w} - T_{b}}{q_{w}} \times (\frac{T_{w} - T_{cl}}{T_{w} - T_{b}}) \times \rho C_{\rho} u_{\tau}$$
$$= (\frac{k}{h D}) \times (\frac{\overline{u} D}{\alpha}) \times (\frac{u_{\tau}}{\overline{u}}) \times (\frac{T_{w} - T_{cl}}{T_{w} - T_{b}})$$
$$= \frac{Re Pr}{Nu} \times \sqrt{\frac{f}{2}} \times (\frac{T_{w} - T_{cl}}{T_{w} - T_{b}})$$

2 Hence, Equating for T_{cl}^+ ,

$$Nu = \frac{Re Pr \sqrt{f/2}}{Pr_T \left(\sqrt{2/f} + 1.5/\kappa + PF_{\infty}\right)} \left(\frac{T_w - T_{cl}}{T_w - T_b}\right)$$

Wall law - Pipe Flow - 2 - L30($\frac{12}{17}$)

To evaluate temperature ratio, we use Power laws

$$(\frac{T-T_w}{T_{cl}-T_w}) = (\frac{y}{R})^{1/7} = \frac{u}{u_{cl}}$$

Then, using definition of T_b , it can be shown that

$$(rac{T_w-T_{cl}}{T_w-T_b})=rac{6}{5}\simeq 1 \ \ ext{and} \ \ rac{u_{cl}}{\overline{u}}=rac{60}{49}\simeq 1.22$$

The most widely used correlation due to Gnienlenski is

$$\mathit{Nu} = rac{(\mathit{Re}-1000) \ \mathit{Pr} \ \sqrt{f/2}}{\sqrt{2/f} + 12.7 \ (\mathit{Pr}^{2/3}-1)}$$

valid for 0.5 < Pr < 2000 and $2300 < \textit{Re} < 5 \times 10^6$

Analogy Method - Pipe Flow - 1 - L30($\frac{13}{17}$)

In the FD Pipe flow , dp/dx = const. Hence, the axial momentum eqn and its consequences are

$$\frac{1}{r} \frac{d(r \tau_{tot})}{dr} = -\frac{dp}{dx} \rightarrow \frac{\tau_{tot}}{\tau_w} = \frac{r}{R} = 1 - \frac{y}{R}$$

But $\tau_{tot} = \rho \left(\nu + \nu_t\right) \frac{du}{dr} = -\rho \left(\nu + \nu_t\right) \frac{du}{dy}$
 $\left(1 + \frac{\nu_t}{\nu}\right) = \frac{1 - y^+/R^+}{du^+/dy^+}$

Then form Slide 2,

$$\frac{dT^+}{dy^+} = (1 - \frac{y^+}{R^+}) \left[\frac{1}{Pr} + (\frac{1 - y^+/R^+}{du^+/dy^+} - 1) \frac{1}{Pr_T} \right]^{-1}$$

Analogy Method - Pipe Flow - 2 - L30($\frac{14}{17}$)

Integrating from y = 0 to R^+ , and using the 3-layer law for u^+ , and hence for (du^+/dy^+) it can be shown that

$$T_{sl}^{+} - 0 = 5 Pr \quad (y_{sl}^{+} = 5)$$

$$T_{trl}^{+} - T_{sl}^{+} = 5 Pr_{T} \ln (1 + 5 \frac{Pr}{Pr_{T}} (y_{trl}^{+} = 30)$$

$$T_{cl}^{+} - T_{trl}^{+} = 2.5 Pr_{T} \ln (\frac{R^{+}}{30}) \text{ for } Pr \geq 1^{2}$$

where

$$T^+_{cl} = rac{Re\ Pr}{Nu}\ \sqrt{rac{f}{2}}\ (rac{T_w-T_{cl}}{T_w-T_b})$$

Therefore, adding the three equations (see next slide)

April 23, 2012

16/19

Analogy Method - Pipe Flow - 3 - L30($\frac{15}{17}$) With $R^+ = (Re/2)\sqrt{f/2}$, addition gives $Nu = \frac{Re Pr \sqrt{f/2} (T_w - T_{cl})/(T_w - T_b)}{5 Pr + 5 Pr_T \ln (1 + 5 \frac{Pr}{Pr_T}) + 2.5 Pr_T \ln \left\{ (\frac{Re}{60}) \sqrt{\frac{f}{2}} \right\}}$

- Dittus Boelter Correlation Nu = 0.023 Re^{0.8} Prⁿ, n = 0.4 for heating and n = 0.3 for cooling.
- Sliecher and Rouse Correlation

$$\begin{array}{rcl} \mathsf{N}u &=& \mathsf{5} + 0.015 \textit{Re}^{a}\textit{Pr}^{b}, (0.1 < \textit{Pr} < 10^{4}), (10^{4} < \textit{Re} < 10^{6}) \\ a &=& 0.88 - \frac{0.24}{4 + \textit{Pr}} \quad b = 0.333 + 0.5 \; \exp \; (-0.6 \; \textit{Pr}) \end{array}$$

For Liquid Metals, $Nu = a + b Re^{0.85} Pr^{0.93}$ where (a = 6.3 and b = 0.0167 for $q_w = \text{const}$) and (a = 4.8 and b = 0.0156 for $T_w = \text{const}$)

<u>Comparison of Correlations - L30($\frac{16}{17}$)</u>						
Re	3000	10000	50000	10 ⁵	10 ⁶	
$Pr = 0.5$, Temp rat = 1.1, $Pr_T = 0.943$						
Gin	8.13	25.2	84.5	147	883	
DB	10.5	27.6	100	174	1100	
SR	11.9	23.7	75.6	130	845	
Anal	10.3	24.4	81.0	139	880	
$Pr = 5.0$, Temp rat = 1.1, $Pr_T = 0.887$						
Gin	19.2	70.1	287	524	3750	
DB	26.5	69.4	251	438	2760	
SR	29.7	74.1	278	498	3520	
Anal	28.1	76.5	293	531	3860	
$Pr = 25.0$, Temp rat = 1.1, $Pr_T = 0.882$						
Gin	33.2	126	545	1020	7780	
DB	50.4	132	479	834	5260	
SR	52.1	139	552	1010	7540	
Anal	40.3	114	455	842	6500	

Summary - L30($\frac{17}{17}$)

- The correlations for Pipe flow can be applied to non-circular ducts by evaluating f, Re and Nu based on hydraulic diameter
- The easy-to-use Dittus-Boelter correlation overpredicts Nu for Pr < 1 and underpredicts Nu for Pr > 1
- For complete description of flow and heat transfer involving complex ducts, strong and changing strain rates due to body forces etc, it is best to adopt CFD techniques with two-eqn or stress-flux eqn models.
- This completes discussion of Turbulent flow and Heat Transfer. In the remaining lectures, we shall discuss Convective Mass Transfer

A (10) A (10)