ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-30 PREDICTION OF TURBULENT HEAT TRANSFER

LECTURE-30 PREDICTION OF TURBULENT HEAT TRANSFER

(1) Prediction of $S t_{x}$ (Ext Bls)
(1) Use of law of the Wall
(2) Analogy Method
(3) Integral Method
(4) Effects of V_{w} and Roughness
(2) Prediction of Nu (Internal Flows)
(1) Use of Law of the wall
(2) Analogy Method

Use of Wall Law - Ext BLs - 1 L30($\frac{1}{17}$)

(1) From lecture 28 , the temperature law of the wall is written as

$$
\begin{aligned}
T_{\infty}^{+} & =\operatorname{Pr}_{T}\left(U_{\infty}^{+}+P F_{\infty}\right) \text { where } \\
U_{\infty}^{+} & =\frac{U_{\infty}}{u_{\tau}}=\frac{U_{\infty}}{\sqrt{\tau_{w} / \rho}}=\sqrt{\frac{2}{C_{f, x}}} \\
T_{\infty}^{+} & =\frac{-\left(T_{\infty}-T_{w}\right)}{q_{w} /\left(\rho C_{p} u_{\tau}\right)}=\frac{\rho C_{p} U_{\infty}}{h_{x}} \times \frac{u_{\tau}}{U_{\infty}}=\frac{\sqrt{C_{f, x} / 2}}{S t_{x}} \\
S t_{x} & =\frac{\sqrt{C_{f, x} / 2}}{\operatorname{Pr}\left(\sqrt{2 / C_{f, x}}+P F_{\infty}\right)} \quad\left(\operatorname{Pr}_{T} \simeq 0.9\right)
\end{aligned}
$$

(2) For $\operatorname{Pr}=1, P F_{\infty}=0$. Reynolds used $\operatorname{Pr}_{T}=1$. Hence, $S t_{x}=C_{f, x} / 2$ (Perfect Reynolds Analogy). For near-unity $\operatorname{Pr}, S t_{x} \simeq\left(C_{f, x} / 2\right) \times \operatorname{Pr}^{-0.4}$. Hence, for zero $\operatorname{Pr~Gr}, \rightarrow S t_{x}=0.0286 \mathrm{Re}_{x}^{-0.2} \mathrm{Pr}^{-0.4}$.
(3) For rough surface , appropriate $C_{f, x}$ and $P F_{\infty}$ to be used

Analogy Method - 1 - Ext BLs - L30 $\left(\frac{2}{17}\right)$

(1) Recall that $\operatorname{Pr}_{\text {eff }}=d T^{+} / d u^{+}=\left(d T^{+} / d y^{+}\right) /\left(d u^{+} / d y^{+}\right)$. Hence, using $\left(\tau_{\text {tot }} / \tau_{w}\right) \simeq 1=\left(1+\nu_{t} / \nu\right)\left(d u^{+} / d y^{+}\right)$gives

$$
\frac{d T^{+}}{d y^{+}}=\frac{\left(1+\nu_{t} / \nu\right)\left(d u^{+} / d y^{+}\right)}{P r^{-1}+\left(\nu_{t} / \nu\right) / P r_{T}}=\left[\frac{1}{P r}+\left(\frac{1}{d u^{+} / d y^{+}}-1\right) \frac{1}{P r_{T}}\right]^{-1}
$$

(2) Integrating from $\mathrm{y}=0$ to ∞, and using the 3-layer law for u^{+}, and hence for $\left(d u^{+} / d y^{+}\right)$it follows that

$$
\begin{aligned}
T_{s l}^{+}-0 & =\operatorname{Pr} y_{s l}^{+}=\operatorname{Pr} u_{s l}^{+}=5 \operatorname{Pr} \\
T_{t r l}^{+}-T_{s l}^{+} & =5 \operatorname{Pr}_{T} \ln \left(1+5 \frac{\operatorname{Pr}}{\operatorname{Pr}}\right) \quad\left(y_{t r l}^{+}=30 \text { used }\right) \\
T_{\infty}^{+}-T_{t r l}^{+} & =2.5 \operatorname{Pr}_{T} \ln \left[\frac{1+\left(\operatorname{Pr} / \operatorname{Pr} r_{T}\right)\left(\delta^{+} / 2.5-1\right)}{1+11\left(\operatorname{Pr} / P r_{T}\right)}\right]
\end{aligned}
$$

Analogy Method - 2 - Ext BLs - L30 ($\frac{3}{17}$)

Adding the last 3 Eqns, it can be shown that

$$
\begin{aligned}
\frac{\sqrt{C_{f, x} / 2}}{S t_{x}} & =5 \operatorname{Pr}+5 \operatorname{Pr}_{T} \ln \left(1+5 \frac{\operatorname{Pr}}{\operatorname{Pr}_{T}}\right) \\
& +2.5 \operatorname{Pr}_{T} \ln \left\{\frac{1+\left(\operatorname{Pr} / r_{T}\right)\left(\delta^{+} / 2.5-1\right)}{1+11\left(\operatorname{Pr} / P r_{T}\right)}\right\}
\end{aligned}
$$

where using the Power law,

$$
\delta^{+}=\left(\frac{U_{\infty}^{+}}{8.75}\right)^{7}=\left(\frac{\sqrt{2 / C_{f, x}}}{8.75}\right)^{7}
$$

The $C_{f, x}$ is evaluated using Integral method of lecture 29.

Use of Int Energy Eqn - 1-L30 $\left(\frac{4}{17}\right)$

(1) When U_{∞} and ($T_{w}-T_{\infty}$) vary arbitrarily with x

$$
\frac{1}{U_{\infty}\left(T_{w}-T_{\infty}\right)} \frac{d}{d x}\left[\Delta_{2} U_{\infty}\left(T_{w}-T_{\infty}\right)\right]=S t_{x}
$$

(2) For further analysis, let $^{1} S t_{x}=C R e_{x}^{-n}$
(3) Then for const U_{∞} and ($T_{w}-T_{\infty}$) BL , that is flat plate

$$
\begin{aligned}
\frac{d \Delta_{2}}{d x} & =S t_{x}=C\left(\frac{U_{\infty} x}{\nu}\right)^{-n} \text { integration gives } \\
\Delta_{2} & =\frac{C}{1-n}\left(\frac{U_{\infty}}{\nu}\right)^{-n} x^{1-n} \text { using } \Delta_{2}=0 \text { at } x=0 \\
S t_{x} & =C\left(\frac{1-n}{C} \times \frac{U_{\infty} \Delta_{2}}{\nu}\right)^{\frac{n}{n-1}}
\end{aligned}
$$

${ }^{1}$ Ambroke G S Sov. Phy. Tech. Phy.,vol2, p 1979, 1957

Use of Int Energy Eqn - 2 - L30 $\left(\frac{5}{17}\right)$

(1) We assume validity of the last relationship regardless of the previous history of the BI . Then, IEE becomes

$$
\frac{d}{d x}\left[\Delta_{2} U_{\infty}\left(T_{w}-T_{\infty}\right)\right]=U_{\infty}\left(T_{w}-T_{\infty}\right) C\left(\frac{1-n}{C} \times \frac{U_{\infty} \Delta_{2}}{\nu}\right)^{\frac{n}{n-1}}
$$

or, integration gives

$$
\Delta_{2}=\frac{C \nu^{n}}{(1-n) U_{\infty}\left(T_{w}-T_{\infty}\right)}\left[\int_{0}^{x} U_{\infty}\left(T_{w}-T_{\infty}\right)^{1 /(1-n)} d x\right]^{1-n}
$$

(2) Using $S t_{x} \sim \Delta_{2}$ relation from previous slide

$$
S t_{x}=\frac{C \nu^{n}\left(T_{w}-T_{\infty}\right)^{n /(1-n)}}{\left[\int_{0}^{x} U_{\infty}\left(T_{w}-T_{\infty}\right)^{1 /(1-n)} d x\right]^{n}}
$$

Use of Int Energy Eqn - 3 - L30 $\left(\frac{6}{17}\right)$

Assuming flat plate data $\mathrm{C}=0.0284 \mathrm{Pr}^{-0.4}$ and $\mathrm{n}=0.2$, expression of previous slide becomes

$$
\begin{aligned}
S t_{x} & =\frac{0.0284 \operatorname{Pr}^{-0.4} \nu^{0.2}\left(T_{w}-T_{\infty}\right)^{0.25}}{\left[\int_{0}^{x} U_{\infty}\left(T_{w}-T_{\infty}\right)^{1.25} d x\right]^{0.2}} \\
& \simeq 0.0295 \operatorname{Pr}^{-0.4} R e_{x}^{-0.2}\left[1-\frac{165}{S t_{x}}\left(\frac{\nu}{U_{\infty}^{2}} \frac{d U_{\infty}}{d x}\right)\right]
\end{aligned}
$$

These expressions give remarkably good fit to Exptl data for pr gr parameter $\left(\nu / U_{\infty}^{2}\right)\left(d U_{\infty} / d x\right)<10^{6}$ (Crawford and Kays)

Effect of $v_{w}-1-\operatorname{L3O}\left(\frac{7}{17}\right)$

(1) For Flat Plate and $\left(T_{w}-T_{\infty}\right)=$ const, Crawford and Kays show that for finite v_{w},

$$
\begin{aligned}
\frac{S t_{x, v_{w}}}{S t_{x, v_{w}=0}} & =\frac{\ln \left(1+B_{h}\right)}{B_{h}} \rightarrow B_{h}=\frac{v_{w} / U_{\infty}}{S t_{x, v_{w}}} \\
\text { or } S t_{x, v_{w}} & =0.0284 \operatorname{Pr}^{-0.4} R e_{x}^{-0.2}\left[\frac{\ln \left(1+B_{h}\right)}{B_{h}}\right]
\end{aligned}
$$

(2) For arbitrary variation of v_{w} IEE reads as

$$
\begin{aligned}
\frac{d \Delta_{2}}{d x} & =S t_{x, v_{w}}+\frac{v_{w}}{U_{\infty}}=S t_{x, v_{w}}\left(1+B_{h}\right) \text { or } \\
& =\left[0.0284 \operatorname{Pr}^{-0.4} \ln \left(1+B_{h}\right) \frac{\left(1+B_{h}\right)}{B_{h}}\right] \operatorname{Re}_{x}^{-0.2}
\end{aligned}
$$

Effect of $v_{w}-2-\operatorname{L3O}\left(\frac{8}{17}\right)$

(1) For $B_{h}=$ const, and using $\Delta_{2}=0$ at $x=0$, integration give

$$
R e_{x}^{-0.2}=1.057\left[0.0284 \operatorname{Pr}^{-0.4} \ln \left(1+B_{h}\right) \frac{\left(1+B_{h}\right)}{B_{h}}\right]^{0.25} R e_{\Delta_{2}}^{-0.25}
$$

(2) Using $S t_{x, v_{w}} \sim R e_{x}$ relation from previous slide

$$
S t_{x, v_{W}}=0.0125 \operatorname{Pr}^{-0.5} \operatorname{Re}_{\Delta_{2}}^{-0.25}\left(1+B_{h}\right)^{0.25}\left[\frac{\ln \left(1+B_{h}\right)}{B_{h}}\right]^{1.25}
$$

We assume validity of this relation even when B_{h}, U_{∞} and ($T_{w}-T_{\infty}$) vary arbitrarily with x (see next slide)

Effect of B_{h}, U_{∞} and $\left(T_{w}-T_{\infty}\right)-\operatorname{L3O}\left(\frac{9}{17}\right)$

For this case, IEE will read as

$$
\begin{aligned}
\frac{d}{d x}\left[\Delta_{2} U_{\infty}\left(T_{w}-T_{\infty}\right)\right] & =0.0125 \operatorname{Pr}^{-0.5} \operatorname{Re}_{\Delta_{2}}^{-0.25} U_{\infty}\left(T_{w}-T_{\infty}\right) \\
& \times\left[\frac{\left(1+B_{h}\right)}{B_{h}} \ln \left(1+B_{h}\right)\right]
\end{aligned}
$$

Integration gives
$S t_{x}=0.0284 \mathrm{Pr}^{-0.4}$

$$
\times \frac{\nu^{0.2}\left(T_{w}-T_{\infty}\right)^{0.25}\left(1+B_{h}\right)^{0.25}\left\{\ln \left(1+B_{h}\right) / B_{h}\right\}^{1.25}}{\left[\int_{0}^{x} U_{\infty}\left(T_{w}-T_{\infty}\right)^{1.25}\left\{\left(1+B_{h}\right) \ln \left(1+B_{h}\right) / B_{h}\right\}^{1.25} d x\right]^{0.2}}
$$

Crawford and Kays show remarkable good fit to experimental data and predictions using mixing length.

Similarity Method for TBL - L30($\left.\frac{10}{17}\right)$

(1) The governing Eqn for a Temperature TBL is

$$
u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=+\nu \frac{\partial}{\partial y}\left[b_{P r} \frac{\partial T}{\partial y}\right]
$$

where $b_{\operatorname{Pr}}=\alpha / \nu+\alpha_{t} / \nu=\operatorname{Pr}^{-1}+\operatorname{Pr}_{T}^{-1} \nu_{t}^{+}$, where $\operatorname{Pr}_{T}=\nu_{t} / \alpha_{t}, \nu^{+}=\nu_{t} / \nu$ and ν_{t} is given by Prandtl's mixing length.
(2) Using similarity variables defined in lecture 29 ,

$$
\frac{d}{d \eta}\left(b_{P r} \theta^{\prime}\right)+f \theta^{\prime}+\left(\frac{2 n}{m+1}\right) f^{\prime}(1-\theta)=\frac{2 x}{m+1}\left(f^{\prime} \frac{d \theta}{d x}-\theta^{\prime} \frac{d f}{d x}\right)
$$

$$
m=\left(\frac{x}{U_{\infty}}\right) \frac{d U_{\infty}}{d x}, n=\left(\frac{x}{T_{w}-T_{\infty}}\right) \frac{d\left(T_{w}-T_{\infty}\right)}{d x}, \theta=\frac{T_{w}-T}{T_{w}-T_{\infty}}
$$

Iterative solution is required at each x .
BCs: $\theta(0)=0$ and $\theta(\infty)=1$.

Wall law - Pipe Flow - 1-L30($\frac{11}{17}$)

(1) Writing wall-law for Pipe centerline

$$
T_{c l}^{+}=\operatorname{Pr}_{T}\left(u_{c l}^{+}+P F_{\infty}\right)=\operatorname{Pr}_{T}\left(\overline{u^{+}}+1.5 / \kappa+P F_{\infty}\right) \text { where }
$$

$$
\begin{aligned}
T_{c l}^{+} & =\frac{T_{w}-T_{b}}{q_{w}} \times\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right) \times \rho C_{p} u_{\tau} \\
& =\left(\frac{k}{h D}\right) \times\left(\frac{\bar{u} D}{\alpha}\right) \times\left(\frac{u_{\tau}}{\bar{u}}\right) \times\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right) \\
& =\frac{R e P r}{N u} \times \sqrt{\frac{f}{2}} \times\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right)
\end{aligned}
$$

(2) Hence, Equating for $T_{c l}^{+}$,

$$
N u=\frac{\operatorname{Re} \operatorname{Pr} \sqrt{f / 2}}{\operatorname{Pr}_{T}\left(\sqrt{2 / f}+1.5 / \kappa+P F_{\infty}\right)}\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right)
$$

Wall law - Pipe Flow - 2 - L30($\left.\frac{12}{17}\right)$

(1) To evaluate temperature ratio, we use Power laws

$$
\left(\frac{T-T_{w}}{T_{c l}-T_{w}}\right)=\left(\frac{y}{R}\right)^{1 / 7}=\frac{u}{u_{c l}}
$$

Then, using definition of T_{b}, it can be shown that

$$
\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right)=\frac{6}{5} \simeq 1 \text { and } \frac{u_{c l}}{\bar{u}}=\frac{60}{49} \simeq 1.22
$$

(2) The most widely used correlation due to Gnienlenski is

$$
N u=\frac{(R e-1000) \operatorname{Pr} \sqrt{f / 2}}{\sqrt{2 / f}+12.7\left(P r^{2 / 3}-1\right)}
$$

valid for $0.5<\operatorname{Pr}<2000$ and $2300<\operatorname{Re}<5 \times 10^{6}$

Analogy Method - Pipe Flow - 1 - L30($\frac{13}{17}$)

(1) In the FD Pipe flow, $d p / d x=$ const. Hence, the axial momentum eqn and its consequences are

$$
\begin{aligned}
\frac{1}{r} \frac{d\left(r \tau_{\text {tot }}\right)}{d r} & =-\frac{d p}{d x} \rightarrow \frac{\tau_{\text {tot }}}{\tau_{w}}=\frac{r}{R}=1-\frac{y}{R} \\
\text { But } \tau_{\text {tot }} & =\rho\left(\nu+\nu_{t}\right) \frac{d u}{d r}=-\rho\left(\nu+\nu_{t}\right) \frac{d u}{d y} \\
\left(1+\frac{\nu_{t}}{\nu}\right) & =\frac{1-y^{+} / R^{+}}{d u^{+} / d y^{+}}
\end{aligned}
$$

(2) Then form Slide 2,

$$
\frac{d T^{+}}{d y^{+}}=\left(1-\frac{y^{+}}{R^{+}}\right)\left[\frac{1}{P r}+\left(\frac{1-y^{+} / R^{+}}{d u^{+} / d y^{+}}-1\right) \frac{1}{P r_{T}}\right]^{-1}
$$

Analogy Method - Pipe Flow - 2 - L30 ($\frac{14}{17}$)

(1) Integrating from $\mathrm{y}=0$ to R^{+}, and using the 3-layer law for u^{+}, and hence for $\left(d u^{+} / d y^{+}\right)$it can be shown that

$$
\begin{aligned}
T_{s l}^{+}-0 & =5 \operatorname{Pr} \quad\left(y_{s l}^{+}=5\right) \\
T_{t r l}^{+}-T_{s l}^{+} & =5 \operatorname{Pr}_{T} \ln \left(1+5 \frac{\operatorname{Pr}}{\operatorname{Pr}} \quad\left(y_{t r l}^{+}=30\right)\right. \\
T_{c l}^{+}-T_{t r l}^{+} & =2.5 \operatorname{Pr}_{T} \ln \left(\frac{R^{+}}{30}\right) \quad \text { for } \operatorname{Pr} \geq 1^{2}
\end{aligned}
$$

where

$$
T_{c l}^{+}=\frac{R e P r}{N u} \sqrt{\frac{f}{2}}\left(\frac{T_{w}-T_{c l}}{T_{w}-T_{b}}\right)
$$

Therefore, adding the three equations (see next slide)
${ }^{2}$ For $\operatorname{Pr} \ll 1$, closed form soln cannot be obtained

Analogy Method - Pipe Flow - 3-L30($\left.\frac{15}{17}\right)$

(1) With $R^{+}=(R e / 2) \sqrt{f / 2}$, addition gives

$$
N u=\frac{\operatorname{Re} \operatorname{Pr} \sqrt{f / 2}\left(T_{w}-T_{c l}\right) /\left(T_{w}-T_{b}\right)}{5 \operatorname{Pr}+5 \operatorname{Pr}_{T} \ln \left(1+5 \frac{P r}{P r_{T}}\right)+2.5 \operatorname{Pr}_{T} \ln \left\{\left(\frac{R e}{60}\right) \sqrt{\frac{f}{2}}\right\}}
$$

(2) Dittus Boelter Correlation $-\mathrm{Nu}=0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{n}, \mathrm{n}=0.4$ for heating and $\mathrm{n}=0.3$ for cooling.
(3) Sliecher and Rouse Correlation
$N u=5+0.015 \operatorname{Re}^{a} \operatorname{Pr}^{b},\left(0.1<\operatorname{Pr}<10^{4}\right),\left(10^{4}<\operatorname{Re}<10^{6}\right)$

$$
a=0.88-\frac{0.24}{4+\operatorname{Pr}} \quad b=0.333+0.5 \exp (-0.6 \operatorname{Pr})
$$

For Liquid Metals, $N u=a+b R e^{0.85} \operatorname{Pr} r^{0.93}$ where
($\mathrm{a}=6.3$ and $\mathrm{b}=0.0167$ for $q_{w}=$ const) and
($\mathrm{a}=4.8$ and $\mathrm{b}=0.0156$ for $T_{w}=$ const)

Comparison of Correlations					
Re	3000	10000	50000	10^{5}	10^{6}
$\operatorname{Pr}=0.5$, Temp rat $=1.1, P r_{T}=0.943$					
Gin	8.13	25.2	84.5	147	883
DB	10.5	27.6	100	174	1100
SR	11.9	23.7	75.6	130	845
Anal	10.3	24.4	81.0	139	880
$\operatorname{Pr}=5.0$, Temp rat $=1.1, \mathrm{Pr}_{T}=0.887$					
Gin	19.2	70.1	287	524	3750
DB	26.5	69.4	251	438	2760
SR	29.7	74.1	278	498	3520
Anal	28.1	76.5	293	531	3860
$\operatorname{Pr}=25.0$, Temp rat $=1.1, \operatorname{Pr}_{T}=0.882$					
Gin	33.2	126	545	1020	7780
DB	50.4	132	479	834	5260
SR	52.1	139	552	1010	7540
Anal	40.3	114	455	842	6500

Summary - L30 $\left(\frac{17}{17}\right)$

(1) The correlations for Pipe flow can be applied to non-circular ducts by evaluating f, Re and Nu based on hydraulic diameter
(2) The easy-to-use Dittus-Boelter correlation overpredicts Nu for $\mathrm{Pr}<1$ and underpredicts Nu for $\mathrm{Pr}>1$
(3) For complete description of flow and heat transfer involving complex ducts, strong and changing strain rates due to body forces etc, it is best to adopt CFD techniques with two-eqn or stress-flux eqn models.
(9) This completes discussion of Turbulent flow and Heat Transfer. In the remaining lectures, we shall discuss Convective Mass Transfer

