ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-29 PREDICTION OF TURBULENT FLOWS

LECTURE-29 PREDICTION OF TURBULENT FLOWS

(1) Prediction of $C_{f, x}$ (Ext Bls)
(1) Integral Method
(2) Complete Laminar-Transition-Turbulent BL
(3) Similarity Method
(2) Prediction of f (Internal Flows)- Use of Law of the wall

Integral Method - Ext BLs - 1 L29($\frac{1}{19}$)

(1) The Integral Momentum Eqn (IME) is applicable to laminar, trnasition and turbulent BLs (lecture 10)

$$
\begin{aligned}
\frac{d \delta_{2}}{d x} & +\frac{1}{U_{\infty}} \frac{d U_{\infty}}{d x}\left(2 \delta_{2}+\delta_{1}\right)=\frac{C_{f, x}}{2}+\frac{V_{w}}{U_{\infty}} \\
\delta_{1} & =\int_{0}^{\delta}\left(1-\frac{u}{U_{\infty}}\right) d y \text { and } \delta_{2}=\int_{0}^{\delta} \frac{u}{U_{\infty}}\left(1-\frac{u}{U_{\infty}}\right) d y
\end{aligned}
$$

(2) In each flow regime appropriate profiles of u / U_{∞} must be specified.
(3) We consider Fully turbulent boundary layer starting from $\mathrm{x}=0$ (leading edge) or from $x=x_{t e}$ (end of transition)

Power Law Assumption - L29($\frac{2}{19}$)

(1) Evaluations of δ_{1} and δ_{2} are negligibly affected in TBLs when Laminar sub-layer and transition layers are ignored.
(2) Then, only fully turbulent vel profile (universal logarithmic law (inner) + law of the wake (outer)) suffices.
(3) However, integration as well as evaluation of $C_{f, x}=\tau_{w} /\left(\rho U_{\infty}^{2}\right)$ becomes extremely involved.
(3) Hence, for an impermeable smooth wall ($v_{w}=0$), a power-law is assumed

$$
u^{+}=a y^{+^{b}} \quad a \simeq 8.75 \text { and } b=1 . / 7
$$

(6) This 1 / 7th power law fits the logarithmic law well upto $y^{+} \simeq 1500$ and also fits the exptl data in the wake-region better than log-law (see next slide)

Comparison with Expt Data - L29 $\left(\frac{3}{19}\right)$

Use of power law - $v_{w}=0-\operatorname{L29}\left(\frac{4}{19}\right)$

(1) Then, it follows that

$$
\begin{aligned}
\frac{u}{U_{\infty}} & =\left(\frac{y}{\delta}\right)^{1 / 7} \text { integration gives } \\
\frac{\delta_{1}}{\delta} & =0.125, \quad \frac{\delta_{2}}{\delta}=\frac{7}{72}=0.097, \quad H=\frac{\delta_{1}}{\delta_{2}}=1.29
\end{aligned}
$$

(2) Now, unlike in laminar flows, $\tau_{w}=\rho u_{\tau}^{2}$ is evaluated from $\left(U_{\infty} / u_{\tau}\right)=8.75\left(\delta u_{\tau} / \nu\right)^{1 / 7}$ giving

$$
\frac{C_{f, x}}{2}=\frac{\tau_{w}}{\rho U_{\infty}^{2}}=0.0225\left(\frac{U_{\infty} \delta}{\nu}\right)^{-0.25}=0.0125\left(\frac{U_{\infty} \delta_{2}}{\nu}\right)^{-0.25}
$$

(3) Both expressions are very good approximations to mildly adv pr gr through to highly fav. pr. gr and upto $R e_{x} \simeq 10^{7}$.

Solving Int Mom Eqn - L29($\frac{5}{19}$)

(1) Substituting for δ_{1} and $C_{f, x}$ with $v_{w}=0$ gives

$$
\frac{d \delta_{2}}{d x}=0.0125\left(\frac{U_{\infty} \delta_{2}}{\nu}\right)^{-0.25}-3.29 \frac{\delta_{2}}{U_{\infty}} \frac{d U_{\infty}}{d x} \text { or }
$$

$\frac{d}{d x}\left[U_{\infty}^{4.11} \delta_{2}^{1.25}\right]=0.0156 \nu^{0.25} U_{\infty}^{3.86}$ integration gives

$$
\left.U_{\infty}^{4.11} \delta_{2}^{1.25}\right|_{x}=\left.U_{\infty}^{4.11} \delta_{2}^{1.25}\right|_{x_{i n}}+0.0156 \nu^{0.25} \int_{x_{i n}}^{x} U_{\infty}^{3.86} d x
$$

(2) If TBL originates at the leading edge ($x_{i n}=0$)

$$
\delta_{2}=\frac{0.036 \nu^{0.2}}{U_{\infty}^{3.29}}\left(\int_{0}^{x} U_{\infty}^{3.86} d x\right)^{0.8} \rightarrow C_{f, x}=0.025\left(\frac{U_{\infty} \delta_{2}}{\nu}\right)^{-0.25}
$$

δ_{2} and $C_{f, x}$ can be evaluated for any arbitrary variation of U_{∞} from mildly adv pr gr through to highly fav. pr. gr
For $U_{\infty}=$ const, $C_{f, x, d p d x=0}=0.0574\left(\frac{U_{\infty} x}{\nu}\right)^{-0.2}$

Highly Adv Pr Gr \& $v_{w}-\operatorname{L29}\left(\frac{6}{19}\right)$

(1) For these cases, IME is again written as

$$
\frac{d \delta_{2}}{d x}+\frac{\delta_{2}}{U_{\infty}} \frac{d U_{\infty}}{d x}(2+H)=\frac{C_{f, x}}{2}+\frac{V_{w}}{U_{\infty}}
$$

(2) Now, H and $C_{f, x}$ are modeled as

$$
\begin{aligned}
& H=\left[1-G \sqrt{C_{f, x} / 2.0}\right]^{-1} \\
& G \simeq 6.2(1.43+\beta+B)^{0.482}, \quad \beta=\frac{\delta_{1}}{\tau_{w}} \frac{d p}{d x}, \quad B=\frac{v_{w} / U_{\infty}}{C_{f, x} / 2} \\
& C_{f, x}=C_{f, x, \text { dpdx=0}} \times(1+0.2 \beta)^{-1} \quad \text { (Crawford and Kays), or } \\
& C_{f, x}=0.246 \times 10^{-0.678 H} \times R e_{\delta_{2}}^{-0.268} \quad \text { (Ludwig and Tilman) } \\
& C_{f, x}=0.336 \times\left\{\ln \left(854.6 \delta_{2} / y_{r e}\right)\right\}^{-2} \quad \text { (rough surface) } \\
& \text { Valid for }-1.43<\beta+B<12 . \text { Iterative soln of IME is } \\
& \text { required. }
\end{aligned}
$$

Complete BL Prediction-1-L29($\left.\frac{7}{19}\right)$

Laminar Regime
(1) For given $U_{\infty}(x)$ and $v_{w}(x)$, evaluate $\delta_{2,1}(x)$
(2) Hence, evaluate $\kappa=\left(\delta_{2, /}^{2} / \nu\right) d U_{\infty} / d x, \mathrm{H}=\delta_{1, /} / \delta_{2, l}$ and $S=\delta_{2,1} / \delta_{4,1}$.
(3) Hence evaluate $C_{f, x, l}$ - subscript I for laminar
(9) Continue calculations until Onset of transition using Cebeci or Fraser and Milne criterion (lecture 28).
Note the values of $x_{t, s}$ and End of transition ($x_{t e}-x_{t s}$)

Complete BL Prediction - 2 - L29 ($\frac{8}{19}$)

 In the Transition regime$$
\begin{aligned}
\left(\frac{u}{U_{\infty}}\right)_{t r} & =(1-\gamma)\left(\frac{u}{U_{\infty}}\right)_{l}+\gamma\left(\frac{u}{U_{\infty}}\right)_{t} \\
\gamma & =1-\exp \left(-5 \xi^{3}\right) \quad \xi=\left(x-x_{t s}\right) /\left(x_{t e}-x_{t s}\right) \\
\delta_{1, t r} & =(1-\gamma) \delta_{1, l}+\gamma \delta_{1, t} \\
\delta_{2, t r} & =(1-\gamma)\left\{(1-\gamma) \delta_{2, l}-\gamma \delta_{1, l}\right\} \\
& +\gamma\left\{\gamma \delta_{2, t}-(1-\gamma) \delta_{1, t}\right\} \\
& +2 \gamma(1-\gamma) \int_{0}^{\delta}\left[1-\left(\frac{u}{U_{\infty}}\right)_{l}\left(\frac{u}{U_{\infty}}\right)_{t}\right] d y \\
H_{t r} & =\delta_{1, t r} / \delta_{2, t r} \\
C_{f, x, t r} & =(1-\gamma) C_{f, x, l}+\gamma C_{f, x, t} \\
\left(\frac{u}{U_{\infty}}\right)_{t} & =\left(\frac{y}{\delta_{t}}\right)^{1 / n} \rightarrow n=\frac{2}{H_{t}-1} \rightarrow \delta_{t}=\delta_{2, t} \frac{H_{t}\left(H_{t}+1\right)}{H_{t}-1}
\end{aligned}
$$

Complete BL Prediction-3-L29($\frac{9}{19}$)

(1) To compute in Turbulent regime, we define $x_{v o}-x_{t s}=0.126\left(x_{t e}-x_{t s}\right)$
(2) Define $x^{\prime}=x-x_{v o}$ and commence soln of turbulent IME where at $x^{\prime}=0$, arbitrarily, $\delta_{2, t}=0.2 \delta_{2,1}$, $H_{t}=1.5$ and
$C_{f, x, t}=0.99 C_{f, x, l}$
(3) At $x_{t e}^{\prime}=x_{t e}-x_{v o}$, the appropriate specifications are $\delta_{2, t}=\delta_{2, t r}, H_{t}=H_{t r}$ and $C_{f, x, t}=C_{f, x, t r}$ and laminar calculations are stopped.

For $x^{\prime}>x_{t e}^{\prime}$, turbulent IME is solved iteratively as described in slide 5. With $\Delta x^{\prime}=0.25 \delta_{2, t}$, convergence is obtained in ≤ 4 iterations.

Solns for Ellipse Family - L29($\frac{10}{19}$)

(1) a, b, $U_{\text {app }}, \rho$ and μ are specified. $\operatorname{Re}=\left(\rho U_{\text {app }} 2 a\right) / \mu$
(2) $U_{\infty}=U_{\text {app }} \times(1+b / a) \times \cos (\beta)$ where β is function of x
(3) $S(x)$ is distance along the surface.
(a) (b / a) >0 (Ellipse), $=1.0$ (cylinder), $=0$ (flat plate)

Flat Plate - L29 $\left(\frac{11}{19}\right)$

(1) $\mathrm{L}=2 \mathrm{a}, R e_{L}=10^{7}, C_{f, x} \times 500$ are plotted.
(2) $\left(x_{t s} / L\right)=0.31,\left(x_{\text {te }} / L\right)=0.4342,\left(x_{v o} / L\right)=0.325$

Cylinder - L29 $\left(\frac{12}{19}\right)$

(1) $\mathrm{D}=2 \mathrm{a}, R e_{D}=10^{7}, C_{f, x} \times 500$ are plotted.
(2) Laminar Separation at $\left(x_{\text {sep }} / D\right)=0.597$
\equiv Turbulent Reattachment assumed
(3) Turbulent Separation at $\left(x_{\text {sep }} / D\right)=0.812$

Ellipse ($\frac{b}{a}-0.5$) - L29($\frac{13}{19}$)

(1) $R e_{2 a}=10^{7}, C_{f, x} \times 500$ are plotted.
(2) $\left(x_{t s} / 2 a\right)=0.3588,\left(x_{t e} / 2 a\right)=0.4284,\left(x_{v o} / 2 a\right)=0.3676$
(3) Turbulent Separation at $\left(x_{\text {sep }} / 2 a\right)=0.958$

Similarity Method for TBL - L29 $\left(\frac{14}{19}\right)$

(1) The differential eqn governing TBL can be written as

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=U_{\infty} \frac{d U_{\infty}}{d x}+\nu \frac{\partial}{\partial y}\left[\left(1+\nu_{t}^{+}\right) \frac{\partial u}{\partial y}\right]
$$

where $\nu_{t}^{+}=\nu_{t} / \nu$ and ν_{t} is given by Prandtl's mixing length.
(2) To convert this eqn to an ODE, we invoke following similarity variables

$$
\begin{aligned}
\eta \equiv y \times \frac{U_{\infty}}{\sqrt{2 \nu L V \xi}} & \Psi \equiv \sqrt{2 \nu L V \xi} \times f(\xi, \eta) \\
\xi \equiv \frac{1}{L V} \int_{0}^{x} U_{\infty} d x & \beta \equiv \frac{2}{U_{\infty}^{2}} \frac{d U_{\infty}}{d x} \int_{0}^{x} U_{\infty} d x
\end{aligned}
$$

$\frac{d}{d \eta}\left[\left(1+\nu_{t}^{+}\right) f^{\prime \prime}\right]+f f^{\prime \prime}+\beta\left(1-f^{\prime 2}\right)=2 \xi\left(f^{\prime} \frac{d f^{\prime}}{d \xi}-f^{\prime \prime} \frac{d f}{d \xi}\right)$
with $f(\xi, 0)=f^{\prime}(\xi, 0)=0, f^{\prime}(\xi, \infty)=1.0 . U_{\infty}(x)$ is
prescribed arbitrary variation. L and V - reference scales.

Sim Meth for Eq. BLs - L29(15)

(1) The Eqn of previous slide can be used for flow over an ellipse, for example, with $U_{\infty}=U_{\text {app }} \times(1+b / a) \times \cos (\beta)$ and $\nu_{t}^{+}=0($ Lam $)$ and $\nu_{t r}^{+}=(1-\gamma)+\gamma \nu_{t}^{+}$(Trans)
(2) When $U_{\infty}=C x^{m}$, (Equilibrium BLs), we have

$$
\begin{aligned}
\eta & =y \times \sqrt{\left(\frac{U_{\infty}}{\nu x}\right)\left(\frac{m+1}{2}\right)} \\
\psi & =\sqrt{\left(\frac{2}{m+1}\right)\left(U_{\infty} \nu x\right)} \times f(x, \eta) \\
\frac{d}{d \eta}\left[\left(1+\nu_{t}^{+}\right) f^{\prime \prime}\right] & +f f^{\prime \prime}+\left(\frac{2 m}{m+1}\right)\left(1-f^{\prime 2}\right) \\
& =x\left(f^{\prime} \frac{d f^{\prime}}{d x}-f^{\prime \prime} \frac{d f}{d x}\right)
\end{aligned}
$$

with $f(x, 0)=f^{\prime}(x, 0)=0, f^{\prime}(x, \infty)=1.0$.

Soln Procedure - L29($\frac{16}{19}$)

(1) The presence of axial derivatives on the RHS requires iterative solution.
(2) Therefore, at first Δx, Set RHS $=0$ and solve 3rd order ODE to predict f, f^{\prime} and $f^{\prime \prime}$ as functions of η
(3) At subsequent Δx 's, evaluate the RHS from df/dx = $\left(f_{x}-f_{x-\Delta x}\right) / \Delta x$ etc and solve the 3rd order ODE by Runge-Kutta method.
(9) Using the new f, f^{\prime} and $f^{\prime \prime}$ distributions, evaluate the RHS and Solve the ODE again
(3) Go to step 3 until predicted f-distributions between iterations converge within a tolerance.
(6) For further refinements of this method see Cebeci and Cousteix, Modeling and Computation of Boundary-Layer Flows, 2nd ed, Springer, (2005)

F. D. Pipe Flow - 1-L29($\frac{17}{19}$)

(1) In lecture 26, it was shown that the log-law predicts the vel profile remarkably well upto the pipe center line. Then

$$
\begin{aligned}
\bar{u} & =\frac{2}{R^{2}} \int_{0}^{R} u r d r \\
\overline{u^{+}} & =\frac{2}{R^{+}} \int_{0}^{R^{+}} u^{+}\left(R^{+}-y^{+}\right) d y^{+} \rightarrow y=R-r
\end{aligned}
$$

(2) Since $R^{+}=\mathrm{O}(1000)$, contribution to the integral upto $y^{+}=$ 30 is negligible. Writing log-law as $y^{+}=E^{-1} \exp \left(\kappa u^{+}\right)$, where $\mathrm{E}=9.152$ and $\kappa=0.41$,

$$
\begin{aligned}
\overline{u^{+}} & =\frac{2 \kappa}{E R^{+2}} \int_{0}^{u_{c l}^{+}} u^{+}\left\{R^{+}-E^{-1} \exp \left(\kappa u^{+}\right)\right\} \exp \left(\kappa u^{+}\right) d u^{+} \\
& =u_{c l}^{+}-\frac{3}{2 \kappa}+\frac{2}{\kappa E R^{+}}-\frac{1}{\kappa E^{2} R^{+}} \simeq u_{c l}^{+}-\frac{3}{2 \kappa}
\end{aligned}
$$

where subscript $\mathrm{cl}=$ centerline

F. D. Pipe Flow - 2 - L29($\frac{18}{19}$)

(The last expression shows that

$$
u_{c l}^{+}=\overline{u^{+}}+3.66=\sqrt{\frac{2}{f}}+3.66=\sqrt{\frac{2}{0.046 R e^{-0.2}}}+3.66
$$

(2) Taking $\operatorname{Re}=50,000, u_{c l}^{+}=23.11$ or $\left(\bar{u} / u_{c l}\right)=1-3.66 / 23.11$ $=0.84$ or $\left(u_{c l} / \bar{u}\right) \simeq 1.19$. $u_{c l}^{+}$increases and $\left(u_{c l} / \bar{u}\right)$ decreases with increase in Re.
(3) Further, writing $u_{c l}^{+}=\kappa^{-1} \ln \left(E R^{+}\right)$, we have

$$
\begin{aligned}
\overline{u^{+}} & =\frac{1}{\kappa} \ln \left(\frac{E}{2} \operatorname{Re} \sqrt{\frac{f}{2}}\right)-3.66 \text { or } \\
\sqrt{\frac{2}{f}} & =\frac{1}{0.41} \ln \left(\frac{9.152}{2} \operatorname{Re} \sqrt{\frac{f}{2}}\right)-3.66 \text { or } \\
\frac{f}{2} & =0.168\left[\ln \left(1.021 \operatorname{Re} \sqrt{\frac{f}{2}}\right)\right]^{-2} \text { implicit formula }
\end{aligned}
$$

F. D. Pipe Flow - 3 - L29($\left.\frac{19}{19}\right)$

(1) To derive an explicit formula for f, we use Power law profile $u^{+}=a y^{+b}$. Then, evaluating \bar{u}^{+}

$$
\frac{f}{2}=\left[\left(\frac{(1+b)(2+b)}{2 a}\right) \times\left(\frac{2}{R e}\right)^{b}\right]^{2 /(1+b)}
$$

(2) For $\mathrm{a}=8.75$ and $\mathrm{b}=1 / 7, \mathrm{f}=0.079 \operatorname{Re}^{-0.25}(\mathrm{Re}<50000)$ For $a=10.3$ and $b=1 / 9, f=0.046 R e^{-0.2}(\operatorname{Re}>50000)$
(3) For a Rough pipe, log-law is given by (lecture 28) $u^{+}=\kappa^{-1} \ln \left(y^{+} / y_{r e}^{+}\right)+8.48=\kappa^{-1} \ln \left(29.73 y^{+} / y_{r e}^{+}\right)$. Then, carrying out integration as before, it can be shown that

$$
\frac{f}{2}=\left[2.5 \ln \left(\frac{D}{y_{r e}}\right)+3.0\right]^{-2}
$$

This eqn is independent of Reynolds number.

