ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-29 PREDICTION OF TURBULENT FLOWS

LECTURE-29 PREDICTION OF TURBULENT FLOWS

1 Prediction of $C_{f,x}$ (Ext Bls)

- Integral Method
- Omplete Laminar-Transition-Turbulent BL
- Similarity Method

Prediction of f (Internal Flows) - Use of Law of the wall

Integral Method - Ext BLs - 1 L29($\frac{1}{19}$)

The Integral Momentum Eqn (IME) is applicable to laminar, trnasition and turbulent BLs (lecture 10)

$$\frac{d \,\delta_2}{d \,x} + \frac{1}{U_\infty} \frac{d \,U_\infty}{d \,x} \left(2 \,\delta_2 + \delta_1\right) = \frac{C_{f,x}}{2} + \frac{V_w}{U_\infty}$$
$$\delta_1 = \int_0^\delta \left(1 - \frac{u}{U_\infty}\right) d \,y \text{ and } \delta_2 = \int_0^\delta \frac{u}{U_\infty} \left(1 - \frac{u}{U_\infty}\right) d \,y$$

- 2 In each flow regime appropriate profiles of u/U_{∞} must be specified.
- We consider Fully turbulent boundary layer starting from x = 0 (leading edge) or from $x = x_{te}$ (end of transition)

< ロ > < 同 > < 回 > < 回 >

Power Law Assumption - L29($\frac{2}{19}$)

- Evaluations of δ_1 and δ_2 are negligibly affected in TBLs when Laminar sub-layer and transition layers are ignored.
- Then, only fully turbulent vel profile (universal logarithmic law (inner) + law of the wake (outer)) suffices.
- Observe the second second
- Hence, for an impermeable smooth wall ($v_w = 0$), a power-law is assumed

$$u^+ = a y^{+^{b}} a \simeq 8.75$$
 and $b = 1./7$.

• This 1 / 7th power law fits the logarithmic law well upto $y^+ \simeq 1500$ and also fits the exptl data in the wake-region better than log-law (see next slide)

Comparison with Expt Data - L29 $\left(\frac{3}{19}\right)$

Use of power law - $V_W = 0$ - **L29**($\frac{4}{19}$)

Then, it follows that

$$\frac{u}{U_{\infty}} = (\frac{y}{\delta})^{1/7} \text{ integration gives}$$
$$\frac{\delta_1}{\delta} = 0.125, \quad \frac{\delta_2}{\delta} = \frac{7}{72} = 0.097, \quad H = \frac{\delta_1}{\delta_2} = 1.29$$

2 Now, unlike in laminar flows, $\tau_w = \rho u_{\tau}^2$ is evaluated from $(U_{\infty}/u_{\tau}) = 8.75 \ (\delta \ u_{\tau}/\nu)^{1/7}$ giving

$$\frac{C_{f,x}}{2} = \frac{\tau_w}{\rho \; U_\infty^2} = 0.0225 \, (\frac{U_\infty \; \delta}{\nu})^{-0.25} = 0.0125 \, (\frac{U_\infty \; \delta_2}{\nu})^{-0.25}$$

Both expressions are very good approximations to mildly adv pr gr through to highly fav. pr. gr and upto $Re_x \simeq 10^7$.

Solving Int Mom Eqn - L29 $(\frac{5}{19})$

Substituting for δ_1 and $C_{f,x}$ with $v_w = 0$ gives

$$\frac{d \,\delta_2}{dx} = 0.0125 \,(\frac{U_\infty \,\delta_2}{\nu})^{-0.25} - 3.29 \,\frac{\delta_2}{U_\infty} \,\frac{d \,U_\infty}{dx} \text{ or}$$

$$\frac{d \,}{dx} \left[U_\infty^{4.11} \,\delta_2^{1.25} \right] = 0.0156 \,\nu^{0.25} \,U_\infty^{3.86} \text{ integration gives}$$

$$U_\infty^{4.11} \,\delta_2^{1.25} \,|_x = U_\infty^{4.11} \,\delta_2^{1.25} \,|_{x_{in}} + 0.0156 \,\nu^{0.25} \,\int_{x_{in}}^x \,U_\infty^{3.86} \,dx$$

If TBL originates at the leading edge ($x_{in} = 0$)

$$\delta_{2} = \frac{0.036 \,\nu^{0.2}}{U_{\infty}^{3.29}} (\int_{0}^{x} U_{\infty}^{3.86} \, dx)^{0.8} \, \rightarrow \, C_{f,x} = 0.025 (\frac{U_{\infty} \, \delta_{2}}{\nu})^{-0.25}$$

 δ_2 and $C_{f,x}$ can be evaluated for any arbitrary variation of U_{∞} from mildly adv pr gr through to highly fav. pr. gr For U_{∞} = const, $C_{f,x,dpdx=0} = 0.0574 \left(\frac{U_{\infty}x}{\nu}\right)^{-0.2}$

Highly Adv Pr Gr & V_W - L29($\frac{b}{10}$) For these cases, IME is again written as $\frac{d \delta_2}{d x} + \frac{\delta_2}{U} \frac{d U_{\infty}}{d x} (2 + H) = \frac{C_{f,x}}{2} + \frac{V_w}{U}$ 2 Now, H and $C_{f,x}$ are modeled as $H = \left[1 - G\sqrt{C_{f,x}/2.0}\right]^{-1}$ $G \simeq 6.2 (1.43 + \beta + B)^{0.482}, \quad \beta = \frac{\delta_1}{\tau_m} \frac{d\rho}{dx}, \quad B = \frac{v_w/U_\infty}{C_m/2}$ $C_{f,x} = C_{f,x,dpdx=0} \times (1 + 0.2 \beta)^{-1}$ (Crawford and Kays), or $C_{f.x} = 0.246 \times 10^{-0.678 \, H} \times Re_{\delta_2}^{-0.268}$ (Ludwig and Tilman) $C_{fx} = 0.336 \times \{\ln (854.6 \delta_2 / \gamma_{re})\}^{-2}$ (rough surface) Valid for $-1.43 < \beta + B < 12$. Iterative soln of IME is required. くゆう くほう くほう 二日

Complete BL Prediction - 1 - L29($\frac{7}{19}$)

Laminar Regime

- For given $U_{\infty}(x)$ and $v_{w}(x)$, evaluate $\delta_{2,l}(x)$
- e Hence, evaluate $\kappa = (\delta_{2,I}^2/\nu) dU_{\infty}/dx$, $H = \delta_{1,I}/\delta_{2,I}$ and $S = \delta_{2,I}/\delta_{4,I}$.
- Hence evaluate C_{f,x,l} subscript I for laminar
- Continue calculations until Onset of transition using Cebeci or Fraser and Milne criterion (lecture 28).
 Note the values of x_{t,s} and End of transition (x_{te} x_{ts})

Complete BL Prediction - 2 - L29 $(\frac{8}{19})$ In the Transition regime

$$\begin{aligned} (\frac{u}{U_{\infty}})_{tr} &= (1-\gamma) \left(\frac{u}{U_{\infty}}\right)_{l} + \gamma \left(\frac{u}{U_{\infty}}\right)_{t} \\ \gamma &= 1 - \exp\left(-5\,\xi^{3}\right) \quad \xi = (x - x_{ts})/(x_{te} - x_{ts}) \\ \delta_{1,tr} &= (1-\gamma)\,\delta_{1,l} + \gamma\,\delta_{1,t} \\ \delta_{2,tr} &= (1-\gamma)\,\left\{(1-\gamma)\,\delta_{2,l} - \gamma\,\delta_{1,l}\right\} \\ &+ \gamma\,\left\{\gamma\,\delta_{2,t} - (1-\gamma)\,\delta_{1,t}\right\} \\ &+ 2\,\gamma\,(1-\gamma)\,\int_{0}^{\delta}\left[1 - \left(\frac{u}{U_{\infty}}\right)_{l}\left(\frac{u}{U_{\infty}}\right)_{t}\right]\,dy \\ H_{tr} &= \delta_{1,tr}/\delta_{2,tr} \\ C_{f,x,tr} &= (1-\gamma)\,C_{f,x,l} + \gamma\,C_{f,x,t} \\ \left(\frac{u}{U_{\infty}}\right)_{t} &= \left(\frac{y}{\delta_{t}}\right)^{1/n} \rightarrow n = \frac{2}{H_{t}-1} \rightarrow \delta_{t} = \delta_{2,t}\,\frac{H_{t}\,(H_{t}+1)}{H_{t}-1} \end{aligned}$$

3 > 4 3

< 6 b

March 26, 2012 11 / 21

∃ ► < ∃</p>

Complete BL Prediction - 3 - L29($\frac{9}{19}$)

To compute in Turbulent regime, we define $x_{vo} - x_{ts} = 0.126 (x_{te} - x_{ts})$ 2 Define $x' = x - x_{vo}$ and commence soln of turbulent **IME** where at x' = 0. arbitrarily, $\delta_{2,t} = 0.2 \delta_{2,t}$ $H_t = 1.5$ and $C_{f,x,t} = 0.99 C_{f,x,t}$ 3 At $x'_{te} = x_{te} - x_{vo}$, the

appropriate specifications are $\delta_{2,t} = \delta_{2,tr}$, $H_t = H_{tr}$ and $C_{f,x,t} = C_{f,x,tr}$ and laminar calculations are stopped. For $x' > x'_{te}$, turbulent IME is solved iteratively as described in slide 5. With $\Delta x' = 0.25 \ \delta_{2,t}$, convergence is obtained in ≤ 4 iterations.

Solns for Ellipse Family - L29($\frac{10}{19}$)

a, b, U_{app}, ρ and μ are specified. Re = (ρ U_{app} 2a)/μ
U_∞ = U_{app} × (1 + b/a) × cos (β) where β is function of x
S (x) is distance along the surface.
(b / a) > 0 (Ellipse), = 1.0 (cylinder), = 0 (flat plate)

Flat Plate - L29 $(\frac{11}{19})$

L = 2a, $Re_L = 10^7$, $C_{f,x} \times 500$ are plotted.
 (x_{ts}/L) = 0.31, (x_{te}/L) = 0.4342, (x_{vo}/L) = 0.325

Cylinder - L29(12/19)

- **1** D = 2a, $Re_D = 10^7$, $C_{f,x} \times 500$ are plotted.
- Laminar Separation at $(x_{sep}/D) = 0.597$ Turbulent Reattachment assumed
- Turbulent Separation at $(x_{sep}/D) = 0.812$

Ellipse ($\frac{b}{2}$ - 0.5) - L29($\frac{13}{19}$)

Re_{2a} = 10⁷, C_{f,x} × 500 are plotted.
 (x_{ts}/2a) = 0.3588, (x_{te}/2a) = 0.4284, (x_{vo}/2a) = 0.3676
 Turbulent Separation at (x_{sep}/2a) = 0.958

 Similarity Method for TBL - L29(¹⁴/₁₉)
 The differential eqn governing TBL can be written as
 u ∂u/∂x + v ∂u/∂y = U_∞ dU_∞/dx + v ∂/∂y [(1 + v_t⁺) ∂u/∂y]
 where v_t⁺ = v_t/v and v_t is given by Prandtl's mixing length.
 To convert this eqn to an ODE, we invoke following

similarity variables

 $\eta \equiv \mathbf{y} \times \frac{U_{\infty}}{\sqrt{2 \nu L V \xi}} \qquad \Psi \equiv \sqrt{2 \nu L V \xi} \times f(\xi, \eta)$ $\xi \equiv \frac{1}{L V} \int_0^x U_{\infty} dx \qquad \beta \equiv \frac{2}{U_{\infty}^2} \frac{d U_{\infty}}{dx} \int_0^x U_{\infty} dx$ $\frac{d}{d\eta} \left[(1 + \nu_t^+) f'' \right] + f f'' \qquad + \beta (1 - f'^2) = 2 \xi (f' \frac{d f'}{d \xi} - f'' \frac{d f}{d \xi})$ with $f(\xi, 0) = f'(\xi, 0) = 0$, $f'(\xi, \infty) = 1.0$. $U_{\infty}(x)$ is
prescribed arbitrary variation. L and V - reference scales.

Sim Meth for Eq. BLs - L29($\frac{15}{19}$)

- The Eqn of previous slide can be used for flow over an ellipse, for example, with $U_{\infty} = U_{app} \times (1 + b/a) \times \cos(\beta)$ and $\nu_t^+ = 0$ (Lam) and $\nu_{tr}^+ = (1 \gamma) + \gamma \nu_t^+$ (Trans)
- **(2)** When $U_{\infty} = C x^m$, (Equilibrium BLs), we have

$$\eta = \mathbf{y} \times \sqrt{\left(\frac{U_{\infty}}{\nu x}\right) \left(\frac{m+1}{2}\right)}$$

$$\psi = \sqrt{\left(\frac{2}{m+1}\right) \left(U_{\infty} \nu x\right)} \times f(x,\eta)$$

$$\frac{d}{d\eta} \left[\left(1 + \nu_t^+\right) f'' \right] + f f'' + \left(\frac{2m}{m+1}\right) \left(1 - f'^2\right)$$

$$= x \left(f' \frac{df'}{dx} - f'' \frac{df}{dx}\right)$$
with $f(x,0) = f'(x,0) = 0, f'(x,\infty) = 1.0.$

Soln Procedure - L29(¹⁶/₁₉)

- The presence of axial derivatives on the RHS requires iterative solution.
- 2 Therefore, at first Δx , Set RHS = 0 and solve 3rd order ODE to predict f, f' and f'' as functions of η
- S At subsequent Δx 's, evaluate the RHS from df/dx = $(f_x f_{x-\Delta x})/\Delta x$ etc and solve the 3rd order ODE by Runge-Kutta method.
- Using the new f, f' and f'' distributions, evaluate the RHS and Solve the ODE again
- Go to step 3 until predicted f-distributions between iterations converge within a tolerance.
- For further refinements of this method see Cebeci and Cousteix, Modeling and Computation of Boundary-Layer Flows, 2nd ed, Springer, (2005)

F. D. Pipe Flow - 1 - L29 $(\frac{17}{10})$

In lecture 26, it was shown that the log-law predicts the vel profile remarkably well upto the pipe center line. Then

$$\overline{u} = \frac{2}{R^2} \int_0^R u \, r \, dr$$

$$\overline{u^+} = \frac{2}{R^{+2}} \int_0^{R^+} u^+ \, (R^+ - y^+) \, dy^+ \quad \rightarrow \quad y = R - r$$

2 Since $R^+ = O(1000)$, contribution to the integral upto $y^+ =$ 30 is negligible. Writing log-law as $y^+ = E^{-1} \exp(\kappa u^+)$, where E = 9.152 and κ = 0.41,

$$\overline{u^{+}} = \frac{2 \kappa}{ER^{+2}} \int_{0}^{u_{cl}^{+}} u^{+} \left\{ R^{+} - E^{-1} \exp(\kappa u^{+}) \right\} \exp(\kappa u^{+}) du^{+}$$
$$= u_{cl}^{+} - \frac{3}{2 \kappa} + \frac{2}{\kappa E R^{+}} - \frac{1}{\kappa E^{2} R^{+2}} \simeq u_{cl}^{+} - \frac{3}{2 \kappa}$$
where subscript cl = centerline

F. D. Pipe Flow - 2 - L29($\frac{18}{19}$)

The last expression shows that

$$u_{cl}^{+} = \overline{u^{+}} + 3.66 = \sqrt{\frac{2}{f}} + 3.66 = \sqrt{\frac{2}{0.046 \ Re^{-0.2}}} + 3.66$$

Taking Re = 50,000, u_{cl}^+ = 23.11 or (\overline{u}/u_{cl}) = 1 - 3.66/23.11 = 0.84 or $(u_{cl}/\overline{u}) \simeq 1.19$. u_{cl}^+ increases and (u_{cl}/\overline{u}) decreases with increase in Re.

Surface Further, writing $u_{cl}^+ = \kappa^{-1} \ln (E R^+)$, we have

$$\overline{u^{+}} = \frac{1}{\kappa} \ln\left(\frac{E}{2} Re \sqrt{\frac{f}{2}}\right) - 3.66 \text{ or}$$

$$\sqrt{\frac{2}{f}} = \frac{1}{0.41} \ln\left(\frac{9.152}{2} Re \sqrt{\frac{f}{2}}\right) - 3.66 \text{ or}$$

$$\frac{f}{2} = 0.168 \left[\ln\left(1.021 Re \sqrt{\frac{f}{2}}\right)\right]^{-2} \text{ implicit formula}$$

F. D. Pipe Flow - 3 - L29 $(\frac{19}{19})$

• To derive an explicit formula for f, we use Power law profile $u^+ = a y^{+^b}$. Then, evaluating \overline{u}^+

$$\frac{f}{2} = \left[\left(\frac{(1+b)(2+b)}{2a} \right) \times \left(\frac{2}{Re} \right)^{b} \right]^{2/(1+b)}$$

- ⁽²⁾ For a = 8.75 and b = 1/7, f = 0.079 $Re^{-0.25}$ (Re < 50000) For a = 10.3 and b = 1/9, f = 0.046 $Re^{-0.2}$ (Re > 50000)
- Solution For a Rough pipe, log-law is given by (lecture 28) $u^+ = \kappa^{-1} \ln(y^+/y_{re}^+) + 8.48 = \kappa^{-1} \ln(29.73 y^+/y_{re}^+)$. Then, carrying out integration as before, it can be shown that

$$rac{f}{2} = \left[2.5\ln(rac{D}{y_{re}}) + 3.0
ight]^{-2}$$

This eqn is independent of Reynolds number.