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LECTURE-29 PREDICTION OF
TURBULENT FLOWS

1 Prediction of Cf ,x ( Ext Bls )
1 Integral Method
2 Complete Laminar-Transition-Turbulent BL
3 Similarity Method

2 Prediction of f ( Internal Flows )- Use of Law of the wall
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Integral Method - Ext BLs - 1 L29( 1
19)

1 The Integral Momentum Eqn ( IME ) is applicable to
laminar, trnasition and turbulent BLs ( lecture 10 )
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U∞
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2 In each flow regime appropriate profiles of u/U∞ must be
specified.

3 We consider Fully turbulent boundary layer starting from
x = 0 ( leading edge ) or from x = xte ( end of transition )
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Power Law Assumption - L29( 2
19)

1 Evaluations of δ1 and δ2 are negligibly affected in TBLs
when Laminar sub-layer and transition layers are ignored.

2 Then, only fully turbulent vel profile ( universal logarithmic
law ( inner ) + law of the wake ( outer ) ) suffices.

3 However, integration as well as evaluation of
Cf ,x = τw/(ρ U2

∞) becomes extremely involved.
4 Hence, for an impermeable smooth wall ( vw = 0 ), a

power-law is assumed

u+ = a y+b
a ' 8.75 and b = 1./7.

5 This 1 / 7th power law fits the logarithmic law well upto
y+ ' 1500 and also fits the exptl data in the wake-region
better than log-law ( see next slide )
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Comparison with Expt Data - L29( 3
19)
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Use of power law - vw = 0 - L29( 4
19)

1 Then, it follows that

u
U∞

= (
y
δ

)1/7 integration gives

δ1

δ
= 0.125,

δ2

δ
=

7
72

= 0.097, H =
δ1

δ2
= 1.29

2 Now, unlike in laminar flows, τw = ρ u2
τ is evaluated from

(U∞/uτ ) = 8.75 (δ uτ/ν)1/7 giving

Cf ,x

2
=

τw

ρ U2
∞

= 0.0225 (
U∞ δ
ν

)−0.25 = 0.0125 (
U∞ δ2

ν
)−0.25

3 Both expressions are very good approximations to mildly
adv pr gr through to highly fav. pr. gr and upto Rex ' 107.
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Solving Int Mom Eqn - L29( 5
19)

1 Substituting for δ1 and Cf ,x with vw = 0 gives

d δ2

dx
= 0.0125 (

U∞ δ2

ν
)−0.25 − 3.29

δ2

U∞
d U∞

dx
or

d
dx

[
U4.11
∞ δ1.25

2

]
= 0.0156 ν0.25 U3.86

∞ integration gives

U4.11
∞ δ1.25

2 |x = U4.11
∞ δ1.25

2 |xin + 0.0156 ν0.25
∫ x

xin

U3.86
∞ dx

2 If TBL originates at the leading edge ( xin = 0 )

δ2 =
0.036 ν0.2

U3.29
∞

(

∫ x

0
U3.86
∞ dx)0.8 → Cf ,x = 0.025(

U∞ δ2

ν
)−0.25

δ2 and Cf ,x can be evaluated for any arbitrary variation of
U∞ from mildly adv pr gr through to highly fav. pr. gr
For U∞ = const, Cf ,x ,dpdx=0 = 0.0574 (U∞ x

ν
)−0.2
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Highly Adv Pr Gr & vw - L29( 6
19)

1 For these cases, IME is again written as
d δ2

d x
+

δ2

U∞
d U∞
d x

(2 + H) =
Cf ,x

2
+

Vw

U∞
2 Now, H and Cf ,x are modeled as

H =

[
1−G

√
Cf ,x/2.0

]−1

G ' 6.2 (1.43 + β + B)0.482, β =
δ1

τw

dp
dx
, B =

vw/U∞
Cf ,x/2

Cf ,x = Cf ,x ,dpdx=0 × (1 + 0.2 β)−1 (Crawford and Kays), or
Cf ,x = 0.246× 10−0.678 H × Re−0.268

δ2
(Ludwig and Tilman)

Cf ,x = 0.336× {ln (854.6 δ2/yre)}−2 (rough surface)

Valid for −1.43 < β + B < 12. Iterative soln of IME is
required.
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Complete BL Prediction - 1 - L29( 7
19)

Laminar Regime
1 For given U∞ (x) and vw (x), evaluate δ2,l (x)
2 Hence, evaluate κ = (δ2

2,l/ν) dU∞/dx , H = δ1,l/δ2,l

and S = δ2,l/δ4,l .
3 Hence evaluate Cf ,x ,l - subscript l for laminar
4 Continue calculations until Onset of transition using Cebeci

or Fraser and Milne criterion ( lecture 28 ).
Note the values of xt ,s and End of transition ( xte − xts )
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Complete BL Prediction - 2 - L29( 8
19)

In the Transition regime

(
u

U∞
)tr = (1− γ) (

u
U∞

)l + γ (
u

U∞
)t

γ = 1− exp (− 5 ξ3) ξ = (x − xts)/(xte − xts)

δ1,tr = (1− γ) δ1,l + γ δ1,t

δ2,tr = (1− γ) {(1− γ) δ2,l − γ δ1,l}
+ γ {γ δ2,t − (1− γ) δ1,t}

+ 2 γ (1− γ)

∫ δ

0

[
1− (

u
U∞

)l (
u

U∞
)t

]
dy

Htr = δ1,tr/δ2,tr

Cf ,x ,tr = (1− γ) Cf ,x ,l + γ Cf ,x ,t

(
u

U∞
)t = (

y
δt

)1/n → n =
2

Ht − 1
→ δt = δ2,t

Ht (Ht + 1)

Ht − 1
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Complete BL Prediction - 3 - L29( 9
19)

1 To compute in Turbulent
regime , we define
xvo − xts = 0.126 (xte − xts)

2 Define x ′
= x − xvo and

commence soln of turbulent
IME where at x ′ = 0,
arbitrarily, δ2,t = 0.2 δ2,l ,
Ht = 1.5 and
Cf ,x ,t = 0.99 Cf ,x ,l

3 At x ′
te = xte − xvo, the

appropriate specifications
are δ2,t = δ2,tr , Ht = Htr and
Cf ,x ,t = Cf ,x ,tr and laminar
calculations are stopped.

Laminar Transition Turbulent

X

=  0 =  1γ γ

X ts te

X vo =  Virtual Origin of TBL

For x ′
> x ′

te, turbulent IME is
solved iteratively as described
in slide 5. With ∆x ′

= 0.25 δ2,t ,
convergence is obtained in ≤ 4
iterations.
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Solns for Ellipse Family - L29(10
19)

U app S ( x )

Y
2b

2a

beta

U 8 ( x )

X

1 a, b, Uapp, ρ and µ are specified. Re = (ρ Uapp 2a)/µ
2 U∞ = Uapp × (1 + b/a)× cos (β) where β is function of x
3 S ( x ) is distance along the surface.
4 ( b / a ) > 0 ( Ellipse ), = 1.0 ( cylinder ), = 0 ( flat plate)
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Flat Plate - L29(11
19)

1 L = 2a, ReL = 107, Cf ,x × 500 are plotted.
2 (xts/L) = 0.31, (xte/L) = 0.4342, (xvo/L) = 0.325
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Cylinder - L29(12
19)

1 D = 2a, ReD = 107, Cf ,x × 500 are plotted.
2 Laminar Separation at (xsep/D) = 0.597
≡ Turbulent Reattachment assumed

3 Turbulent Separation at (xsep/D) = 0.812
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Ellipse ( b
a - 0.5 ) - L29(13

19)

1 Re2a = 107, Cf ,x × 500 are plotted.
2 (xts/2a) = 0.3588, (xte/2a) = 0.4284, (xvo/2a) = 0.3676
3 Turbulent Separation at (xsep/2a) = 0.958
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Similarity Method for TBL - L29(14
19)

1 The differential eqn governing TBL can be written as

u
∂u
∂x

+ v
∂u
∂y

= U∞
dU∞
dx

+ ν
∂

∂y

[
(1 + ν+

t )
∂u
∂y

]
where ν+

t = νt/ν and νt is given by Prandtl’s mixing length.
2 To convert this eqn to an ODE, we invoke following

similarity variables

η ≡ y × U∞√
2 ν L V ξ

Ψ ≡
√

2 ν L V ξ × f (ξ, η)

ξ ≡ 1
L V

∫ x

0
U∞ dx β ≡ 2

U2
∞

d U∞
dx

∫ x

0
U∞ dx

d
dη

[
(1 + ν+

t ) f
′′
]

+ f f
′′

+ β (1− f
′2

) = 2 ξ (f
′ d f ′

d ξ
− f

′′ d f
d ξ

)

with f (ξ, 0) = f ′
(ξ, 0) = 0, f ′

(ξ,∞) = 1.0. U∞ (x) is
prescribed arbitrary variation. L and V - reference scales.
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Sim Meth for Eq. BLs - L29(15
19)

1 The Eqn of previous slide can be used for flow over an
ellipse, for example, with U∞ = Uapp × (1 + b/a)× cos (β)
and ν+

t = 0 ( Lam ) and ν+
tr = (1− γ) + γ ν+

t ( Trans )
2 When U∞ = C xm, ( Equilibrium BLs ) , we have

η = y ×
√

(
U∞
ν x

) (
m + 1

2
)

ψ =

√
(

2
m + 1

) (U∞ ν x)× f (x , η)

d
dη

[
(1 + ν+

t ) f
′′
]

+ f f
′′

+ (
2m

m + 1
) (1− f

′2
)

= x (f
′ df ′

dx
− f

′′ df
dx

)

with f (x ,0) = f ′
(x ,0) = 0, f ′

(x ,∞) = 1.0.

() March 26, 2012 17 / 21



Soln Procedure - L29(16
19)

1 The presence of axial derivatives on the RHS requires
iterative solution.

2 Therefore, at first ∆x , Set RHS = 0 and solve 3rd order
ODE to predict f, f ′ and f ′′ as functions of η

3 At subsequent ∆x ’s, evaluate the RHS from df/dx =
(fx − fx−∆x )/∆x etc and solve the 3rd order ODE by
Runge-Kutta method.

4 Using the new f, f ′ and f ′′ distributions, evaluate the RHS
and Solve the ODE again

5 Go to step 3 until predicted f-distributions between
iterations converge within a tolerance.

6 For further refinements of this method see Cebeci and
Cousteix, Modeling and Computation of Boundary-Layer
Flows, 2nd ed, Springer, ( 2005 )
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F. D. Pipe Flow - 1 - L29(17
19)

1 In lecture 26, it was shown that the log-law predicts the vel
profile remarkably well upto the pipe center line . Then

u =
2

R2

∫ R

0
u r dr

u+ =
2

R+2

∫ R+

0
u+ (R+ − y+) dy+ → y = R − r

2 Since R+ = O ( 1000 ), contribution to the integral upto y+ =
30 is negligible. Writing log-law as y+ = E−1 exp (κ u+) ,
where E = 9.152 and κ = 0.41,

u+ =
2 κ

ER+2

∫ u+
cl

0
u+
{

R+ − E−1 exp (κ u+)
}

exp (κ u+) du+

= u+
cl −

3
2 κ

+
2

κ E R+
− 1
κ E2 R+2 ' u+

cl −
3

2 κ
where subscript cl = centerline
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F. D. Pipe Flow - 2 - L29(18
19)

1 The last expression shows that

u+
cl = u+ + 3.66 =

√
2
f

+ 3.66 =

√
2

0.046 Re−0.2 + 3.66

2 Taking Re = 50,000, u+
cl = 23.11 or (u/ucl) = 1 - 3.66/23.11

= 0.84 or (ucl/u) ' 1.19 . u+
cl increases and (ucl/u)

decreases with increase in Re.
3 Further, writing u+

cl = κ−1 ln (E R+), we have

u+ =
1
κ

ln (
E
2

Re

√
f
2

)− 3.66 or√
2
f

=
1

0.41
ln (

9.152
2

Re

√
f
2

)− 3.66 or

f
2

= 0.168

[
ln (1.021 Re

√
f
2

)

]−2

implicit formula
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F. D. Pipe Flow - 3 - L29(19
19)

1 To derive an explicit formula for f , we use Power law profile
u+ = a y+b . Then, evaluating u+

f
2

=

[
(

(1 + b) (2 + b)

2a
)× (

2
Re

)b
]2/(1+b)

2 For a = 8.75 and b = 1/7, f = 0.079 Re−0.25 ( Re < 50000 )
For a = 10.3 and b = 1/9, f = 0.046 Re−0.2 ( Re > 50000 )

3 For a Rough pipe , log-law is given by ( lecture 28 )
u+ = κ−1 ln(y+/y+

re) + 8.48 = κ−1 ln(29.73 y+/y+
re). Then,

carrying out integration as before, it can be shown that

f
2

=

[
2.5 ln(

D
yre

) + 3.0
]−2

This eqn is independent of Reynolds number.
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