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LECTURE-27 TURBULENCE MODELS-2
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Low Ret e-ε model L27( 1
19)

For low Ret = νt/ν
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Comments - L27( 2
19)

1 Model constants1 are sensitised to low Ret region near the
wall. They tend to high Ret values beyond sub-layers

2 The correction to CD is chosen to give values of νt in
agreement with the Van-Driest mixing length formula

3 The correction to C2 is selected from exptl. data on the
decay of isotropic turbulence at low Ret ( at large times,
e ∝ t−n where n ' 2.5 to 2.8).

4 The correction to ε is introduced to account for the
non-isotropic contribution to the dissipation.

5 Wall-functions are no longer necessary and e and ε Eqns
can be solved with ewall = ε∗wall = 0. However, to capture the
low Ret effects, very fine mesh ( > 60 grid nodes ) become
necessary in the y+ < 100 region.

1Jones W P and Launder B L The Prediction of Laminarisation with a
Two-Equation Model of Turbulence, Int. Jnl. of Heat and Mass Transfer, vol.
15, p 301, 1972
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Stress Eqn Model- L27( 3
19)

Six transport equations for the one-point correlation u′
i u′

j are
derived from equation for Bij by setting separation ξk = 0 (
lecture 23 )
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Modeling u′
i u′

j Eqn - L27( 4
19)

1 Invoking the idea of local isotropy at high Ret the
destruction rate is equally distributed among all its
components . Hence εij = (2/3) ε δij where ε is obtained
from its eqn.

2 Pressure-Strain Correlation PSij acts in two ways: Firstly, it
sustains the division of TKE ( e ) into its three components
u′2

i and secondly, it destructs the absolute magnitude of the
shear stresses. Hence, without further elaboration

− PSij = Cp1

ε

e
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i v ′
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2
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3
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′
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(see next slide)
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Contd . . . - L27( 5
19)

This algebraic expression for PSij is derived from its exact Eqn2.
The term containing Cp1 is called return-to-isotropy . The PSw

term is called the wall-reflection term which accounts for the
effects of pressure reflections from the wall. The recommended
constants are: Cp1 = 1.5, C

′

p1 = 0.12, Cp2 = 0.764, C
′

p2 =
0.01, Cp3 = 0.109, Cp4 = 0.182, LB = wall distance. Finally the
Triple Velocity correlation u′

i u′
j u′

k in the Diffusion term Dij is

modeled from its exact Eqn and (p′/ρ)
{

∂u′
i /∂xj + ∂u′

j /∂xi

}
' 0.

−u′
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e
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l
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where Cs ' 0.08 to o.11 ( from num expts )
2Hanjalic K. and Launder B. E. A Reynolds Stress Model of Turbulence

and its Application to Thin Shear Flows, JFM.,52(4), p 609-638, 1972
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Algebraic Models ( ASMs ) - L27( 6
19)

1 Implementation of Stress-Eqn model requires solution of 6
differential eqns for u′

i u′
j , 2 Eqns for e and ε coupled with

the 3 RANS Eqns. This is a formidable problem.
2 The modeled forms presented above show that spatial

gradients of u′
i u′

j occur only in the diffusion and convection
- these terms make the Eqns differential ones.

3 Alg. Stress Models are developed using the idea that

u′
i u′

j

e
'

D u′
i u′

j

Dt − Diff (u′
i u′

j )
D e
D t − Diff (e)

=
−(2/3) (1− Cp1)δij + (P/ ε)F

(P/ ε)− 1 + Cp1

F = (1− Cp2)
Pij

P
− Cp3

P
′

ij

P
− Cp4

e
P

(
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∂xj
+
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)

+
2
3

(Cp2 + Cp3) δij ( computational expense reduced)
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Low Ret ASM - L27( 7
19)

u′
i u′

j = −(2/3) e δij + e × F

F =
νt

e
Sij + C1
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e
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1
3
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e
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e
(Ωik Ωjk −

1
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+ C4
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(ε∗)2
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νt e
(ε∗)2

(Ωil Ωlm Smj + Sil Ωlm Ωmj −
2
3

Slm Ωmn Ωnl δij)

+
νt e
(ε∗)2

(C6 Sij Skl Skl + C7 Sij Ωkl Ωkl) ( see next slide )
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Low Ret ASM Contd - L27( 8
19)

Ωij = (∂ui/∂xj − ∂uj/∂xi) Sij = (∂ui/∂xj + ∂uj/∂xi)

µt = fµ C∗
D e2/ε∗ → fµ = 1− exp

[
−(

Ret

90
)0.5 − (

Ret

90
)2

]
C∗

D = 0.3× (1 + 0.35
{

max (S, Ω)
}1.5

)−1

×
[
1− exp

{
− 0.36

exp (−0.75 max (S, Ω)

}]
S = (e/ε∗)

√
0.5 Sij Sij Ω = (e/ε∗)

√
0.5 Ωij Ωij

Constants are: C1 = -0.1, C2 = 0.1, C3 = 0.26, C4 = - 10 (C∗
D)2,

C5 = 0, C6 = - 5 (C∗
D)2 and C7 = 5 (C∗

D)2. The model is tested for
very complex strain fields - swirling flows, curved channels and
jet-impingement on a wall ( Craft T. J., Launder B. L. and Suga
K, IJHFF, 17(12), p 108, 1996 )
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Scalar Transport - L27( 9
19)

From Lecture 21,

ρm cpm

[
∂T̂
∂t

+
∂ûj T̂
∂xj

]
= − ∂q̂j

∂xj
+ µ Φ̂v (Instantaneous)

ρm cpm

[
∂T
∂t

+
∂uj T
∂xj

]
= − ∂

∂xj
(− km

∂T
∂xj

+ ρm cpm u′
j T ′)

+ µeff Φv + ρm ε (Time averaged)

ρm cpm u′
j T ′ must be obtained from

1 Eddy Diffusivity model, or
2 Transport Eqn for u′

j T ′
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Eddy Diffusivity model - L27( 10
19)

1 Analogous to µt , we define Turbulent thermal conductivity kt

so that

− u′
i T ′ = (

kt

ρ cp
)

∂T
∂xi

= αt
∂T
∂xi

=
νt

PrT

∂T
∂xi

where PrT = Turbulent Prandtl number simeq 0.9 when Ret

is high.
2 Hence, energy Eqn will read as

D T
D t

=
∂

∂xk

{
(

ν

Pr
+

νt

σt
)

∂T
∂xk

}
+

Qgen

ρ cp

where Qgen = µeff Φv + ρm ε. Usually, ρm ε << µeff Φv .
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Comments on EDM - L27( 11
19)

1 The model is very convenient because νt is obtained from
mixing length, or one- or two-eqn models and PrT is an
absolute constant

2 The disadvantage is that αt = 0 where νt = 0. In several
flows, significant temperature gradients and hence heat
transfer exist in regions where νt = 0.

3 Like νt , αt is also isotropic . But, measurement of decay of
non-axi-symmetric temperature profiles in a fully developed
turbulent flow in a pipe suggests that the ratio of tangential
to radial diffusivities ( αt ,θ/αt ,r ) >> 1 near the wall.

4 Therefore, in general, u′
i T ′ must be obtained directly from

its differential transport equation.
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u′
i T ′ Eqn - L27( 12

19)
Eqn for u′

i T ′ is derived by multiplying Eqn for T̂ by u
′

i and Eqn
for ûi by T

′
- addition and time-averaging gives .
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∂xk

]
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∂xk
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∂u′
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∂xk
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Modeling u′
i T ′ Eqn - L27( 13

19)
1 Like PSij , Redistribution term RDT is modeled as

RDT = −CT 1
ε

e
u′

i T ′ + CT 2 u′
k T ′ ∂ui

∂xk

= − 0.5
ε

e
u′

n T ′ e3/2

ε LB
( for Pr > 1)

= −
{

CT 1 + 0.5 (
Pr + 1

Pr
)

}
ε

e
u′

i T ′ ( for Pr << 1)

2 At high Ret or ( Peclet ), the task of Destruction is
performed by RDT . Hence, DisT = 0 .

3 In the diffusion term , effect of p
′
is either neglected or taken

to be 0.2 ×u′
i u′

k T ′ where

−u′
i u′

k T ′ = CT
e
ε

[
u′

j u′
k

∂u′
i T ′

∂xj
+ u′

i u′
k

∂u′
j T ′

∂xj

]
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Solving u′
i T ′ Eqn - L27( 14

19)

1 The model constants are: CT 1 = 3.6, CT 2 = 0.266
and CT = 0.11.

2 Required correlations are taken as

− u′
i T ′ =

νt

PrT

∂T
∂xi

and − u′
i u′

j = νt Sij

3 νt is determined from e and ε Eqns
4 For complete range of Prandtl numbers, PrT is modeled as

PrT = 0.85 + 0.0309
{

Pr + 1
Pr

}
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Algebraic Flux Model - L27( 15
19)

1 Eqn for scalar fluctuations is derived as

D T
′2
/2

Dt
= − ∂

∂xi

[
u′
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2
− α

∂

∂xi

{
T ′2

2

}]
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i T ′ ∂T

∂xi
− α (

∂T ′

∂xi
)2

where α (∂T ′

∂xi
)2 = εT ∝ e

ε
T ′2

2 The AFM is derived from

D u′
i T ′

D t
− Diff (u′

i T ′) =

[
(P − ε)e + (P − ε)

T ′2

2

]
u′

i T ′

e
√

T ′2

T ′2 = C
′

T
e
ε

u′
i T ′ ∂T

∂xk
prod = diss assumed

where C
′

T ' 1.6 for Pr ≥ 1.
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Evidence from DNS - Pipe flow - L27( 16
19)
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1 Mean T profiles for pipe
flow agreed with DNS

2 Location of peak T ′2 shows
that production shifts
towards larger y+ as Pr
decreases.

0.2

−0.3

−0.2

− 0.1

0.1

0.3

Lo
ss

G
ai

n

Production

Diffusion

Redistribution

Dissipation

50 150

0.02

0.04

− 0.04

− 0.02

G
ai

n
Lo

ss

Redistribution

Diffusion

Production

Dissipation

Budget v  T Budget

50 150

(  a  ) u  T  (  b  )

1 u′T ′ budget is similar to
e-budget

2 v ′T ′ budget resembles u′v ′

budget justifying Eddy Diff
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Combustion and Turbulence - 1 - L27( 17
19)

1 In Combustion it is necessary to solve differential eqns for
all participating species k.

∂(ρm ωk)

∂t
+

∂(ρm uj ωk)

∂xj
=

∂

∂xj

[
ρm Deff

∂ωk

∂xj

]
+ Rk

where Rk = rate of species generation/consumption.
Deff = ν/Sc + νt/SCt and SCt ' 0.9 .

2 The simplest postulate is called the Simple Chemical
Reaction ( SCR ) that is written as
1 kg of Fuel + Rst kg of Oxidant = (1 + Rst) kg of Product
There are only three species Fuel, Oxidant air and Products
and Rst = (A/F )stoich

3 Rox = Rst × Rfu and Rpr = −(1 + Rst)× Rfu. In laminar flow

Rfu = − A exp (
− E
Ru T

) ωm
fu ωn

ox (A and E are fuel-specific)
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Combustion and Turbulence - 2 - L27( 18
19)

1 In turbulent combustion, however, it is observed that outer
edges of flames are very intermittent and jagged.

2 Experimentally it is observed that even if time-averaged ωfu

and ωox are high, Rfu rates are not as high as would be
expected from the Arrhenius formula

3 This is because, the fuel and oxidant at a given point are
present at different times. Clearly, therefore, time scales of
chemical reaction and turbulence are important. These are
characterised by SL/u

′
rms where SL is the laminar flame

speed of the fuel.
4 These ideas are captured3 in

Rfu = − Cebu ρm

√
(ω

′
fu)

2
ε

e
' − Cebu ρm ωfu

ε

e

3Spalding D. B. Development of Eddy-Breakup Model of Turbulent
Combustion, 16th Symposium on Combustion, p 1657, 1976
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Combustion and Turbulence - 3 - L27( 19
19)

1 In practical computing, the applicability of the EBU has
been enhanced by the following variant

Rfu = −ρm
ε

e
Min

{
A ωfu,

A
Rst

ωox ,
A

′

1 + Rst
ωprod

}
where A = 4 and A

′ ' 2.
2 In the next lecture, we shall discuss tow important aspects

of turbulent flows: ( a ) Laminar-to-Turbulent Transition
and ( b ) Effect of Wall Roughness
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