ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-27 TURBULENCE MODELS-2

LECTURE-27 TURBULENCE MODELS-2

- Low Ret Two-Eqn model
- High Ret Stress-Eqn model
- Low Ret Stress-Eqn model
- Algebraic Stress-Eqn model
- Scalar Transport model
 - Eddy Diffusivity model
 - 2 Turbulent Flux Model
- Modeling Combustion and Turbulence Interaction

Low $Re_t = \epsilon$ model L27($\frac{1}{19}$) For low $Re_t = \nu_t/\nu$

$$\begin{split} \rho \frac{De}{\partial t} &= \frac{\partial}{\partial x_i} \left\{ \left(\mu + \frac{\mu_t}{\sigma_e} \right) \frac{\partial e}{\partial x_i} \right\} + \mu_t \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \frac{\partial u_i}{\partial x_j} - \rho \, \epsilon^* \\ \rho \frac{D\epsilon^*}{\partial t} &= \frac{\partial}{\partial x_i} \left\{ \left(\mu + \frac{\mu_t}{\sigma_\epsilon} \right) \frac{\partial \epsilon^*}{\partial x_i} \right\} \\ &- \frac{\epsilon^*}{e} \left\{ C_1 \, \mu_t \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \frac{\partial u_i}{\partial x_j} - C_2 \, \rho \, \epsilon^* \right\} \\ &+ 2 \, \nu \, \mu_t \left(\frac{\partial^2 \, u_i}{\partial x_k \, \partial x_l} \right)^2 \\ \mu_t &= C_D^* \left(\frac{\rho \, e^2}{\epsilon^*} \right), \quad C_D^* = C_D \, \exp \left\{ \frac{-3.4}{(1 + Re_t/50)^2} \right\} \\ C_1^* &= C_1, \quad C_2^* = C_2 \, \left[1 - 0.3 \, \exp \left\{ - Re_t^2 \right\} \right] \\ \epsilon^* &= \epsilon - 2 \, \nu \left(\frac{\partial e^{0.5}}{\partial x_i} \right)^2 \end{split}$$

Comments - L27($\frac{2}{19}$)

- Model constants¹ are sensitised to low *Re_t* region near the wall. They tend to high *Re_t* values beyond sub-layers
- 2 The correction to C_D is chosen to give values of ν_t in agreement with the Van-Driest mixing length formula
- The correction to C_2 is selected from exptl. data on the decay of isotropic turbulence at low Re_t (at large times, $e \propto t^{-n}$ where n $\simeq 2.5$ to 2.8).
- The correction to ϵ is introduced to account for the non-isotropic contribution to the dissipation.
- Solution Wall-functions are no longer necessary and e and ϵ Eqns can be solved with $e_{wall} = \epsilon^*_{wall} = 0$. However, to capture the low Re_t effects, very fine mesh (> 60 grid nodes) become necessary in the $y^+ < 100$ region.

¹Jones W P and Launder B L The Prediction of Laminarisation with a Two-Equation Model of Turbulence, Int. Jnl. of Heat and Mass Transfer, vol. 15, p 301, 1972

Stress Eqn Model- L27($\frac{3}{19}$)

Six transport equations for the one-point correlation $u'_i u'_j$ are derived from equation for B_{ij} by setting separation $\xi_k = 0$ (lecture 23)

$$\frac{D u'_{i} u'_{j}}{Dt} = -\left[\overline{u'_{j} u'_{k}} \frac{\partial u_{i}}{\partial x_{k}} + \overline{u'_{i} u'_{k}} \frac{\partial u_{j}}{\partial x_{k}}\right] \\
+ \frac{\partial}{\partial x_{k}} \left[\overline{u'_{i} u'_{j} u'_{k}} + \frac{\overline{p'}}{\rho} \left\{u'_{i} \delta_{jk} + u'_{j} \delta_{ik}\right\}\right] \\
+ \frac{D u'_{i}}{\rho} \left\{\frac{\partial u'_{i}}{\partial x_{j}} + \frac{\partial u'_{j}}{\partial x_{i}}\right\} - 2 \nu \frac{\partial u'_{i}}{\partial x_{k}} \frac{\partial u'_{j}}{\partial x_{k}} \\
\{PS_{ij}\} \qquad \{\epsilon_{ij}\}$$

イロト イ押ト イヨト イヨト

Modeling $\overline{u'_i u'_j}$ Eqn - L27($\frac{4}{19}$)

- Invoking the idea of local isotropy at high Re_t the destruction rate is equally distributed among all its components. Hence $\epsilon_{ij} = (2/3) \epsilon \delta_{ij}$ where ϵ is obtained from its eqn.
- Pressure-Strain Correlation PS_{ij} acts in two ways: Firstly, it sustains the division of TKE (e) into its three components $\overline{u'_i}^2$ and secondly, it *destructs* the absolute magnitude of the shear stresses. Hence, without further elaboration

$$-PS_{ij} = C_{p_1} \frac{\epsilon}{e} \left(\overline{u'_i v'_j} - \frac{2}{3} e \,\delta_{ij} \right) + C_{p2} \left(P_{ij} - \frac{P_{ii}}{3} \right) \\ + C_{p3} \left(P'_{ij} - \frac{2}{3} P \,\delta_{ij} \right) + C_{p4} e \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + PS_w \\ PS_w = \frac{e^{3/2}}{\epsilon L_B} \left[C'_{p1} \frac{\epsilon}{e} \left(\overline{u'_i v'_j} - \frac{2}{3} e \,\delta_{ij} \right) + C'_{p2} \left(P_{ij} - P'_{ij} \right) \right] \\ P'_u = -\overline{u'_i u'_i} \frac{\partial U_k}{\partial u_k} - \overline{u'_i u'_i} \frac{\partial U_k}{\partial u_k} \quad (\text{see pext slide}) \stackrel{\text{e}}{=} 0$$

Contd ... - L27($\frac{5}{19}$)

This algebraic expression for PS_{ij} is derived from its exact Eqn². The term containing C_{p1} is called return-to-isotropy. The PS_w term is called the *wall-reflection* term which accounts for the effects of pressure reflections from the wall. The recommended constants are: $C_{p1} = 1.5$, $C'_{p1} = 0.12$, $C_{p2} = 0.764$, $C'_{p2} = 0.01$, $C_{p3} = 0.109$, $C_{p4} = 0.182$, L_B = wall distance. Finally the Triple Velocity correlation $\overline{u'_i u'_j u'_k}$ in the Diffusion term D_{ij} is

modeled from its exact Eqn and $\overline{(p'/\rho)} \left\{ \partial u'_i / \partial x_j + \partial u'_j / \partial x_i \right\} \simeq 0.$

$$-\overline{u_{i}' u_{j}' u_{k}'} = C_{s} \frac{e}{\epsilon} \left\{ \overline{u_{i}' u_{l}'} \frac{\partial \overline{u_{j}' u_{k}'}}{\partial x_{l}} + \overline{u_{j}' u_{l}'} \frac{\partial \overline{u_{k}' u_{i}'}}{\partial x_{l}} + \overline{u_{k}' u_{l}'} \frac{\partial \overline{u_{i}' u_{j}'}}{\partial x_{l}} \right\}$$

where $C_s \simeq 0.08$ to 0.11 (from num expts) ²Hanjalic K. and Launder B. E. *A Reynolds Stress Model of Turbulence* and its Application to Thin Shear Flows, JFM.,52(4), p 609-638, 1972 ≥ 0.00

Algebraic Models (ASMs) - L27($\frac{6}{19}$)

- Implementation of Stress-Eqn model requires solution of 6 differential eqns for $\overline{u'_i u'_j}$, 2 Eqns for e and ϵ coupled with the 3 RANS Eqns. This is a formidable problem.
- The modeled forms presented above show that spatial gradients of $\overline{u'_i u'_j}$ occur only in the diffusion and convection these terms make the Eqns differential ones.
- Alg. Stress Models are developed using the idea that

$$\frac{\overline{u'_i u'_j}}{e} \simeq \frac{\frac{D \overline{u'_i u'_j}}{Dt} - \text{Diff}(\overline{u'_i u'_j})}{\frac{D e}{Dt} - \text{Diff}(e)} = \frac{-(2/3)(1 - C_{\rho 1})\delta_{ij} + (P/\epsilon)F}{(P/\epsilon) - 1 + C_{\rho 1}}$$

$$F = (1 - C_{\rho 2})\frac{P_{ij}}{P} - C_{\rho 3}\frac{P'_{ij}}{P} - C_{\rho 4}\frac{e}{P}(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})$$

$$+ \frac{2}{3}(C_{\rho 2} + C_{\rho 3})\delta_{ij} \text{ (computational expense reduced)}$$

Low Re_t ASM - L27($\frac{7}{19}$)

$$\begin{split} \overline{u'_{j} \ u'_{j}} &= -(2/3) \ e \ \delta_{ij} + e \times F \\ F &= \frac{\nu_{t}}{e} \ S_{ij} + C_{1} \ \frac{\nu_{t}}{e} \left(S_{ik} \ S_{jk} - \frac{1}{3} \ S_{kl} \ S_{kl} \ \delta_{ij}\right) \\ &+ C_{2} \ \frac{\nu_{t}}{e} \left(\Omega_{ik} \ S_{jk} + \Omega_{jk} \ S_{jk}\right) + C_{3} \ \frac{\nu_{t}}{e} \left(\Omega_{ik} \ \Omega_{jk} - \frac{1}{3} \ \Omega_{kl} \ \Omega_{kl} \ \delta_{ij}\right) \\ &+ C_{4} \ \frac{\nu_{t} \ e}{(\epsilon^{*})^{2}} \left(S_{kl} \ \Omega_{lj} + S_{kj} \ \Omega_{li}\right) S_{kl} \\ &+ C_{5} \ \frac{\nu_{t} \ e}{(\epsilon^{*})^{2}} \left(\Omega_{il} \ \Omega_{lm} \ S_{mj} + S_{il} \ \Omega_{lm} \ \Omega_{mj} - \frac{2}{3} \ S_{lm} \ \Omega_{mn} \ \Omega_{nl} \ \delta_{ij}\right) \\ &+ \ \frac{\nu_{t} \ e}{(\epsilon^{*})^{2}} \left(C_{6} \ S_{ij} \ S_{kl} \ S_{kl} + C_{7} \ S_{ij} \ \Omega_{kl} \ \Omega_{kl}\right) \ (\text{ see next slide }) \end{split}$$

2

イロト イポト イヨト イヨト

Low Re_t ASM Contd - L27($\frac{8}{19}$)

$$\begin{split} \Omega_{ij} &= (\partial u_i / \partial x_j - \partial u_j / \partial x_i) \qquad S_{ij} = (\partial u_i / \partial x_j + \partial u_j / \partial x_i) \\ \mu_t &= f_\mu \ C_D^* \ e^2 / \epsilon^* \ \rightarrow \ f_\mu = 1 - \exp\left[-(\frac{Re_t}{90})^{0.5} - (\frac{Re_t}{90})^2\right] \\ C_D^* &= 0.3 \times (1 + 0.35 \ \left\{\max\left(\overline{S}, \overline{\Omega}\right)\right\}^{1.5})^{-1} \\ &\times \left[1 - \exp\left\{-\frac{0.36}{\exp\left(-0.75 \max\left(\overline{S}, \overline{\Omega}\right)\right)}\right\}\right] \\ \overline{S} &= (e/\epsilon^*) \sqrt{0.5 \ S_{ij} \ S_{ij}} \qquad \overline{\Omega} = (e/\epsilon^*) \sqrt{0.5 \ \Omega_{ij} \ \Omega_{ij}} \end{split}$$

Constants are: $C_1 = -0.1$, $C_2 = 0.1$, $C_3 = 0.26$, $C_4 = -10$ $(C_D^*)^2$, $C_5 = 0$, $C_6 = -5$ $(C_D^*)^2$ and $C_7 = 5$ $(C_D^*)^2$. The model is tested for very complex strain fields - swirling flows, curved channels and jet-impingement on a wall (Craft T. J., Launder B. L. and Suga K, IJHFF, 17(12), p 108, 1996)

Scalar Transport - L27($\frac{9}{19}$)

From Lecture 21,

$$\rho_{m} c_{pm} \left[\frac{\partial \hat{T}}{\partial t} + \frac{\partial \hat{u}_{j} \hat{T}}{\partial x_{j}} \right] = -\frac{\partial \hat{q}_{j}}{\partial x_{j}} + \mu \hat{\Phi}_{v} \quad \text{(Instantaneous)}$$

$$\rho_{m} c_{pm} \left[\frac{\partial T}{\partial t} + \frac{\partial u_{j} T}{\partial x_{j}} \right] = -\frac{\partial}{\partial x_{j}} \left(-k_{m} \frac{\partial T}{\partial x_{j}} + \rho_{m} c_{pm} \overline{u'_{j} T'} \right)$$

$$+ \mu_{eff} \Phi_{v} + \rho_{m} \epsilon \quad \text{(Time averaged)}$$

 $\rho_m c_{pm} u'_i T'$ must be obtained from

- Eddy Diffusivity model, or
- 2 Transport Eqn for $\overline{u'_i T'}$

Eddy Diffusivity model - L27($\frac{10}{19}$)

Analogous to µ_t, we define Turbulent thermal conductivity k_t so that

$$-\overline{u'_{i}T'} = \left(\frac{k_{t}}{\rho c_{p}}\right)\frac{\partial T}{\partial x_{i}} = \alpha_{t}\frac{\partial T}{\partial x_{i}} = \frac{\nu_{t}}{Pr_{T}}\frac{\partial T}{\partial x_{i}}$$

where Pr_{T} = Turbulent Prandtl number *simeq* 0.9 when Re_t is high.

Pence, energy Eqn will read as

$$\frac{D T}{D t} = \frac{\partial}{\partial x_k} \left\{ \left(\frac{\nu}{Pr} + \frac{\nu_t}{\sigma_t} \right) \frac{\partial T}{\partial x_k} \right\} + \frac{Q_{gen}}{\rho c_p}$$

where $Q_{gen} = \mu_{eff} \Phi_v + \rho_m \epsilon$. Usually, $\rho_m \epsilon << \mu_{eff} \Phi_v$.

Comments on EDM - L27($\frac{11}{19}$)

- The model is very convenient because ν_t is obtained from mixing length, or one- or two-eqn models and Pr_T is an absolute constant
- 2 The disadvantage is that $\alpha_t = 0$ where $\nu_t = 0$. In several flows, significant temperature gradients and hence heat transfer exist in regions where $\nu_t = 0$.
- Solution Like ν_t , α_t is also isotropic. But, measurement of decay of non-axi-symmetric temperature profiles in a fully developed turbulent flow in a pipe suggests that the ratio of tangential to radial diffusivities ($\alpha_{t,\theta}/\alpha_{t,r}$) >> 1 near the wall.
- Therefore, in general, $\overline{u'_i T'}$ must be obtained directly from its differential transport equation.

- 4 回 ト 4 回 ト

$$\overline{u'_i T'}$$
 Eqn - L27($\frac{12}{19}$)

Eqn for $\overline{u'_i T'}$ is derived by multiplying Eqn for \hat{T} by u'_i and Eqn for \hat{u}_i by T' - addition and time-averaging gives .

$$\frac{\partial u'_{i} T'}{\partial t} + u_{k} \frac{\partial u'_{i} T'}{\partial x_{k}} = -\left[\overline{u'_{i} u'_{k}} \frac{\partial T}{\partial x_{k}} + \overline{u'_{k} T'} \frac{\partial u_{i}}{\partial x_{k}}\right] \\
= \frac{\{P_{T}\}}{-\frac{\partial}{\partial x_{k}} \left[\overline{u'_{i} u'_{k} T'} + \frac{\overline{p' T'}}{\rho} \delta_{ik} - \alpha \frac{\partial \overline{u'_{i} T'}}{\partial x_{k}}\right] \\
= \frac{\{D_{T}\}}{\left\{\frac{p'}{\rho} \left\{\frac{\partial T'}{\partial x_{i}}\right\} - (\nu + \alpha) \frac{\overline{\partial u'_{i}}}{\partial x_{k}} \frac{\partial T'}{\partial x_{k}} \\
= \{RD_{T}\} \qquad \{Dis_{T}\}$$

Modeling u'_i *T'* **Eqn - L27(** $\frac{13}{19}$ **)**

• Like PS_{ij} , Redistribution term RD_T is modeled as

$$\begin{aligned} RD_T &= -C_{T1} \frac{\epsilon}{e} \overline{u'_i T'} + C_{T2} \overline{u'_k T'} \frac{\partial u_i}{\partial x_k} \\ &= -0.5 \frac{\epsilon}{e} \overline{u'_n T'} \frac{e^{3/2}}{\epsilon L_B} \quad (\text{ for } \Pr > 1) \\ &= -\left\{ C_{T1} + 0.5 \left(\frac{Pr+1}{Pr}\right) \right\} \frac{\epsilon}{e} \overline{u'_i T'} \quad (\text{ for } \Pr <<1) \end{aligned}$$

- 2 At high Re_t or (Peclet), the task of Destruction is performed by RD_T . Hence, $Dis_T = 0$.
- In the diffusion term , effect of p' is either neglected or taken to be $0.2 \times \overline{u'_i u'_k T'}$ where

$$-\overline{u'_{i} u'_{k} T'} = C_{T} \frac{e}{\epsilon} \left[\overline{u'_{j} u'_{k}} \frac{\partial \overline{u'_{i} T'}}{\partial x_{j}} + \overline{u'_{i} u'_{k}} \frac{\partial \overline{u'_{j} T'}}{\partial x_{j}} \right]$$

Solving $u'_i T'$ **Eqn - L27(**¹⁴/₁₉**)**

- The model constants are: $C_{T1} = 3.6$, $C_{T2} = 0.266$ and $C_T = 0.11$.
- Required correlations are taken as

$$-\overline{u'_i T'} = rac{
u_t}{Pr_T} rac{\partial T}{\partial x_i}$$
 and $-\overline{u'_i u'_j} =
u_t S_{ij}$

- **3** ν_t is determined from e and ϵ Eqns
- For complete range of Prandtl numbers, Pr_T is modeled as

$$Pr_T = 0.85 + 0.0309 \left\{ rac{Pr+1}{Pr}
ight\}$$

Algebraic Flux Model - L27(¹⁵/₁₉)

Eqn for scalar fluctuations is derived as

$$\frac{D T^{'^2}/2}{Dt} = -\frac{\partial}{\partial x_i} \left[\frac{\overline{u'_i T'^2}}{2} - \alpha \frac{\partial}{\partial x_i} \left\{ \frac{\overline{T'^2}}{2} \right\} \right] \\ - \overline{u'_i T'} \frac{\partial T}{\partial x_i} - \alpha \overline{(\frac{\partial T'}{\partial x_i})^2}$$

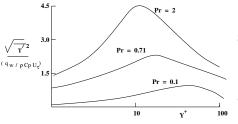
where
$$\alpha \left(\frac{\partial T'}{\partial x_i}\right)^2 = \epsilon_T \propto \frac{e}{\epsilon} \overline{T'^2}$$

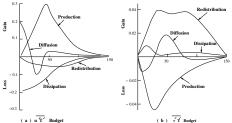
The AFM is derived from

$$\frac{D \overline{u'_i T'}}{D t} - \text{Diff}(\overline{u'_i T'}) = \left[\frac{(P - \epsilon)_e + (P - \epsilon)_{\overline{T'^2}}}{2}\right] \frac{\overline{u'_i T'}}{e \sqrt{T'^2}}$$
$$\overline{T'^2} = C'_T \frac{e}{\epsilon} \overline{u'_i T'} \frac{\partial T}{\partial x_k} \text{ prod = diss assumed}$$

where $C_{T}' \simeq 1.6$ for $Pr \geq 1$.

Evidence from DNS - Pipe flow - L27($\frac{16}{19}$)





- Mean T profiles for pipe flow agreed with DNS
- Location of peak $\overline{T'^2}$ shows that production shifts towards larger y^+ as Pr decreases.
- $\overline{u'T'}$ budget is similar to e-budget
- v'T' budget resembles u'v' budget justifying Eddy Diff model for this case.

Combustion and Turbulence - 1 - L27($\frac{17}{19}$)

In Combustion it is necessary to solve differential eqns for all participating species k.

$$\frac{\partial(\rho_m \,\omega_k)}{\partial t} + \frac{\partial(\rho_m \, u_j \,\omega_k)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\rho_m \, D_{\text{eff}} \, \frac{\partial \omega_k}{\partial x_j} \right] + R_k$$

where R_k = rate of species generation/consumption. $D_{\text{eff}} = \nu/Sc + \nu_t/SC_t$ and $SC_t \simeq 0.9$.

The simplest postulate is called the Simple Chemical Reaction (SCR) that is written as

 kg of Fuel + R_{st} kg of Oxidant = (1 + R_{st}) kg of Product There are only three species Fuel, Oxidant air and Products and R_{st} = (A/F)_{stoich}

3
$$R_{ox} = R_{st} \times R_{fu}$$
 and $R_{pr} = -(1 + R_{st}) \times R_{fu}$. In laminar flow

$$R_{fu} = -A \exp\left(\frac{-E}{R_u T}\right) \omega_{fu}^m \omega_{ox}^n$$
 (A and E are fuel-specific)

Combustion and Turbulence - 2 - L27($\frac{18}{19}$)

- In turbulent combustion, however, it is observed that outer edges of flames are very intermittent and jagged.
- 2 Experimentally it is observed that even if time-averaged $\overline{\omega}_{fu}$ and $\overline{\omega}_{ox}$ are high, R_{fu} rates are not as high as would be expected from the Arrhenius formula
- This is because, the fuel and oxidant at a given point are present at different times. Clearly, therefore, time scales of chemical reaction and turbulence are important. These are characterised by S_L/u'_{rms} where S_L is the laminar flame speed of the fuel.

These ideas are captured³ in

$$R_{fu} = - C_{ebu} \rho_m \sqrt{\overline{(\omega'_{fu})^2}} \frac{\epsilon}{e} \simeq - C_{ebu} \rho_m \overline{\omega_{fu}} \frac{\epsilon}{e}$$

³Spalding D. B. Development of Eddy-Breakup Model of Turbulent Combustion, 16th Symposium on Combustion, p 1657, 1976

Combustion and Turbulence - 3 - L27($\frac{19}{19}$)

In practical computing, the applicability of the EBU has been enhanced by the following variant

$$\boldsymbol{R}_{fu} = -\rho_m \, \frac{\epsilon}{\boldsymbol{e}} \, \mathsf{Min} \left\{ \boldsymbol{A} \, \overline{\omega}_{fu}, \frac{\boldsymbol{A}}{\boldsymbol{R}_{st}} \, \overline{\omega}_{ox}, \frac{\boldsymbol{A}'}{\boldsymbol{1} + \boldsymbol{R}_{st}} \, \overline{\omega}_{prod} \right\}$$

where A = 4 and $A' \simeq 2$.

In the next lecture, we shall discuss tow important aspects of turbulent flows: (a) Laminar-to-Turbulent Transition and (b) Effect of Wall Roughness