ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date

Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076

India
LECTURE-27 TURBULENCE MODELS-2

LECTURE-27 TURBULENCE MODELS-2

(1) Low R_{t} Two-Eqn model
(2) High $R e_{t}$ Stress-Eqn model
(3) Low $R e_{t}$ Stress-Eqn model
(9) Algebraic Stress-Eqn model
(0) Scalar Transport model

- Eddy Diffusivity model
(2) Turbulent Flux Model
© Modeling Combustion and Turbulence Interaction

Low $\operatorname{Re}_{t} \mathbf{e}-\epsilon$ model L27($\frac{1}{19}$)

For low $\boldsymbol{R e}_{t}=\nu_{t} / \nu$

$$
\begin{aligned}
\rho \frac{D e}{\partial t} & =\frac{\partial}{\partial x_{i}}\left\{\left(\mu+\frac{\mu_{t}}{\sigma_{e}}\right) \frac{\partial e}{\partial x_{i}}\right\}+\mu_{t}\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right] \frac{\partial u_{i}}{\partial x_{j}}-\rho \epsilon^{*} \\
\rho \frac{D \epsilon^{*}}{\partial t} & =\frac{\partial}{\partial x_{i}}\left\{\left(\mu+\frac{\mu_{t}}{\sigma_{\epsilon}}\right) \frac{\partial \epsilon^{*}}{\partial x_{i}}\right\} \\
& -\frac{\epsilon^{*}}{e}\left\{C_{1} \mu_{t}\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right] \frac{\partial u_{i}}{\partial x_{j}}-C_{2} \rho \epsilon^{*}\right\} \\
& +2 \nu \mu_{t}\left(\frac{\partial^{2} u_{i}}{\partial x_{k} \partial x_{l}}\right)^{2} \\
\mu_{t} & =C_{D}^{*}\left(\frac{\rho e^{2}}{\epsilon^{*}}\right), \quad C_{D}^{*}=C_{D} \exp \left\{\frac{-3.4}{\left(1+R e_{t} / 50\right)^{2}}\right\} \\
C_{1}^{*} & =C_{1}, \quad C_{2}^{*}=C_{2}\left[1-0.3 \exp \left\{-R e_{t}^{2}\right\}\right] \\
\epsilon^{*} & =\epsilon-2 \nu\left(\frac{\partial e^{0.5}}{\partial x_{i}}\right)^{2}
\end{aligned}
$$

Comments - L27 $\left(\frac{2}{19}\right)$

(1) Model constants ${ }^{1}$ are sensitised to low $R e_{t}$ region near the wall. They tend to high $R e_{t}$ values beyond sub-layers
(2) The correction to C_{D} is chosen to give values of ν_{t} in agreement with the Van-Driest mixing length formula
(3) The correction to C_{2} is selected from exptl. data on the decay of isotropic turbulence at low Re_{t} (at large times, $e \propto t^{-n}$ where $\mathrm{n} \simeq 2.5$ to 2.8).
(9) The correction to ϵ is introduced to account for the non-isotropic contribution to the dissipation.
(6) Wall-functions are no longer necessary and e and ϵ Eqns can be solved with $e_{\text {wall }}=\epsilon_{\text {wall }}^{*}=0$. However, to capture the low $R e_{t}$ effects, very fine mesh (>60 grid nodes) become necessary in the $y^{+}<100$ region.
${ }^{1}$ Jones W P and Launder BL The Prediction of Laminarisation with a Two-Equation Model of Turbulence, Int. Jnl. of Heat and Mass Transfer, vol. 15, p 301, 1972

Stress Eqn Model- L27($\frac{3}{19}$)

Six transport equations for the one-point correlation $\overline{u_{i}^{\prime} u_{j}^{\prime}}$ are derived from equation for $B_{i j}$ by setting separation $\xi_{k}=0$ (lecture 23)

$$
\begin{aligned}
\frac{D \overline{u_{i}^{\prime} u_{j}^{\prime}}}{D t}= & -\left[\overline{u_{j}^{\prime} u_{k}^{\prime}} \frac{\partial u_{i}}{\partial x_{k}}+\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial u_{j}}{\partial x_{k}}\right] \\
- & \frac{\partial}{\partial x_{k}}\left[\overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}+\overline{\frac{p^{\prime}}{\rho}\left\{u_{i}^{\prime} \delta_{j k}+u_{j}^{\prime} \delta_{i k}\right\}}\right] \\
+ & \frac{\left\{D_{i j}\right\}}{\overline{p^{\prime}}\left\{\frac{\partial u_{i}^{\prime}}{\partial x_{j}}+\frac{\partial u_{j}^{\prime}}{\partial x_{i}}\right\}}-2 \nu \overline{\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{j}^{\prime}}{\partial x_{k}}} \\
\left\{P S_{i j}\right\} & \left\{\epsilon_{i j}\right\}
\end{aligned}
$$

Modeling $\overline{u_{i}^{\prime} u_{j}^{\prime}}$ Eqn - L27($\left.\frac{4}{19}\right)$

(1) Invoking the idea of local isotropy at high $R e_{t}$ the destruction rate is equally distributed among all its components. Hence $\epsilon_{i j}=(2 / 3) \epsilon \delta_{i j}$ where ϵ is obtained from its eqn.
(2) Pressure-Strain Correlation $P S_{i j}$ acts in two ways: Firstly, it sustains the division of TKE (e) into its three components $\overline{u_{i}^{\prime 2}}$ and secondly, it destructs the absolute magnitude of the shear stresses. Hence, without further elaboration

$$
\begin{aligned}
-P S_{i j} & =C_{p_{1}} \frac{\epsilon}{e}\left(\overline{u_{i}^{\prime} v_{j}^{\prime}}-\frac{2}{3} \boldsymbol{e} \delta_{i j}\right)+C_{p 2}\left(P_{i j}-\frac{P_{i i}}{3}\right) \\
& +C_{p 3}\left(P_{i j}^{\prime}-\frac{2}{3} P \delta_{i j}\right)+C_{p 4} e\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+P S_{w} \\
P S_{w} & =\frac{e^{3 / 2}}{\epsilon L_{B}}\left[C_{p 1}^{\prime} \frac{\epsilon}{e}\left(\overline{u_{i}^{\prime} v_{j}^{\prime}}-\frac{2}{3} e \delta_{i j}\right)+C_{p 2}^{\prime}\left(P_{i j}-P_{i j}^{\prime}\right)\right] \\
P^{\prime} & =-\overline{u^{\prime} . u^{\prime}} \underline{\partial U_{k}}-\overline{u^{\prime} . u^{\prime}} \frac{\partial U_{k}}{\text { (see nexf slide) }} \overline{\text { March } 11,2011}
\end{aligned}
$$

Contd ... - L27($\frac{5}{19}$)

This algebraic expression for $P S_{i j}$ is derived from its exact Eqn ${ }^{2}$. The term containing $C_{p 1}$ is called return-to-isotropy. The $P S_{w}$ term is called the wall-reflection term which accounts for the effects of pressure reflections from the wall. The recommended constants are: $C_{p 1}=1.5, C_{p 1}^{\prime}=0.12, C_{p 2}=0.764, C_{p 2}^{\prime}=$ $0.01, C_{p 3}=0.109, C_{p 4}=0.182, L_{B}=$ wall distance. Finally the Triple Velocity correlation $\overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}$ in the Diffusion term $D_{i j}$ is modeled from its exact Eqn and $\overline{\left(p^{\prime} / \rho\right)\left\{\partial u_{i}^{\prime} / \partial x_{j}+\partial u_{j}^{\prime} / \partial x_{i}\right\}} \simeq 0$.
where $C_{S} \simeq 0.08$ to 0.11 (from num expts)
${ }^{2}$ Hanjalic K. and Launder B. E. A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows, JFM.,52(4), p 609-638, 1972

Algebraic Models (ASMs) - L27 ($\frac{6}{19}$)

(1) Implementation of Stress-Eqn model requires solution of 6 differential eqns for $\overline{u_{i}^{\prime} u_{j}^{\prime}}, 2$ Eqns for e and ϵ coupled with the 3 RANS Eqns. This is a formidable problem.
(2) The modeled forms presented above show that spatial gradients of $\overline{u_{i}^{\prime} u_{j}^{\prime}}$ occur only in the diffusion and convection - these terms make the Eqns differential ones.
(0) Alg. Stress Models are developed using the idea that

$$
\frac{\overline{u_{i}^{\prime} u_{j}^{\prime}}}{e} \simeq \frac{\frac{D \overline{u_{i}^{\prime} u_{j}^{\prime}}}{D t}-\operatorname{Diff}\left(\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)}{\frac{D e}{D t}-\operatorname{Diff}(e)}=\frac{-(2 / 3)\left(1-C_{p 1}\right) \delta_{i j}+(P / \epsilon) F}{(P / \epsilon)-1+C_{p 1}}
$$

$$
F=\left(1-C_{p 2}\right) \frac{P_{i j}}{P}-C_{p 3} \frac{P_{i j}^{\prime}}{P}-C_{p 4} \frac{e}{P}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

$+\frac{2}{3}\left(C_{p 2}+C_{p 3}\right) \delta_{i j}$ (computational expense reduced)

Low $R e_{t}$ ASM - L27($\left(\frac{7}{19}\right)$

$$
\begin{aligned}
\overline{u_{i}^{\prime} u_{j}^{\prime}} & =-(2 / 3) e \delta_{i j}+e \times F \\
F & =\frac{\nu_{t}}{e} S_{i j}+C_{1} \frac{\nu_{t}}{e}\left(S_{i k} S_{j k}-\frac{1}{3} S_{k l} S_{k l} \delta_{i j}\right) \\
& +C_{2} \frac{\nu_{t}}{e}\left(\Omega_{i k} S_{j k}+\Omega_{j k} S_{j k}\right)+C_{3} \frac{\nu_{t}}{e}\left(\Omega_{i k} \Omega_{j k}-\frac{1}{3} \Omega_{k l} \Omega_{k l} \delta_{i j}\right) \\
& +C_{4} \frac{\nu_{t} e}{\left(\epsilon^{*}\right)^{2}}\left(S_{k l} \Omega_{l j}+S_{k j} \Omega_{l i}\right) S_{k l} \\
& +C_{5} \frac{\nu_{t} e}{\left(\epsilon^{*}\right)^{2}}\left(\Omega_{i l} \Omega_{l m} S_{m j}+S_{i l} \Omega_{l m} \Omega_{m j}-\frac{2}{3} S_{l m} \Omega_{m n} \Omega_{n l} \delta_{i j}\right) \\
& +\frac{\nu_{t} e}{\left(\epsilon^{*}\right)^{2}}\left(C_{6} S_{i j} S_{k l} S_{k l}+C_{7} S_{i j} \Omega_{k l} \Omega_{k l}\right) \quad \text { (see next slide) }
\end{aligned}
$$

Low $R e_{t}$ ASM Contd $-\operatorname{L27}\left(\frac{8}{19}\right)$

$$
\begin{aligned}
\Omega_{i j} & =\left(\partial u_{i} / \partial x_{j}-\partial u_{j} / \partial x_{i}\right) \quad S_{i j}=\left(\partial u_{i} / \partial x_{j}+\partial u_{j} / \partial x_{i}\right) \\
\mu_{t} & =t_{\mu} C_{D}^{*} e^{2} / \epsilon^{*} \rightarrow f_{\mu}=1-\exp \left[-\left(\frac{R e_{t}}{90}\right)^{0.5}-\left(\frac{R e_{t}}{90}\right)^{2}\right] \\
C_{D}^{*} & =0.3 \times\left(1+0.35\{\max (\bar{S}, \bar{\Omega})\}^{1.5}\right)^{-1} \\
& \times\left[1-\exp \left\{-\frac{0.36}{\exp (-0.75 \max (\bar{S}, \bar{\Omega})}\right\}\right] \\
\bar{S} & =\left(e / \epsilon^{*}\right) \sqrt{0.5 S_{i j} S_{i j}} \bar{\Omega}=\left(e / \epsilon^{*}\right) \sqrt{0.5 \Omega_{i j} \Omega_{i j}}
\end{aligned}
$$

Constants are: $C_{1}=-0.1, C_{2}=0.1, C_{3}=0.26, C_{4}=-10\left(C_{D}^{*}\right)^{2}$, $C_{5}=0, C_{6}=-5\left(C_{D}^{*}\right)^{2}$ and $C_{7}=5\left(C_{D}^{*}\right)^{2}$. The model is tested for very complex strain fields - swirling flows, curved channels and jet-impingement on a wall (Craft T. J., Launder B. L. and Suga K, IJHFF, 17(12), p 108, 1996)

Scalar Transport - L27($\frac{9}{19}$)

From Lecture 21,

$$
\begin{aligned}
\rho_{m} c_{p m}\left[\frac{\partial \hat{T}}{\partial t}+\frac{\partial \hat{u}_{j} \hat{T}}{\partial x_{j}}\right] & =-\frac{\partial \hat{q}_{j}}{\partial x_{j}}+\mu \hat{\Phi}_{v} \quad \text { (Instantaneous) } \\
\rho_{m} c_{p m}\left[\frac{\partial T}{\partial t}+\frac{\partial u_{j} T}{\partial x_{j}}\right] & =-\frac{\partial}{\partial x_{j}}\left(-k_{m} \frac{\partial T}{\partial x_{j}}+\rho_{m} c_{p m} \overline{u_{j}^{\prime} T^{\prime}}\right) \\
& +\mu_{\text {eff }} \Phi_{v}+\rho_{m} \epsilon \text { (Time averaged) }
\end{aligned}
$$

$\rho_{m} C_{p m} \overline{u_{j}^{\prime}} T^{\prime}$ must be obtained from
(1) Eddy Diffusivity model, or
(2) Transport Eqn for $\overline{u_{j}^{\prime} T^{\prime}}$

Eddy Diffusivity model - L27($\left.\frac{10}{19}\right)$

(1) Analogous to μ_{t}, we define Turbulent thermal conductivity k_{t} so that

$$
-\overline{u_{i}^{\prime} T^{\prime}}=\left(\frac{k_{t}}{\rho c_{p}}\right) \frac{\partial T}{\partial x_{i}}=\alpha_{t} \frac{\partial T}{\partial x_{i}}=\frac{\nu_{t}}{P_{T}} \frac{\partial T}{\partial x_{i}}
$$

where $\operatorname{Pr}_{T}=$ Turbulent Prandtl number simeq 0.9 when $R e_{t}$ is high.
(2) Hence, energy Eqn will read as

$$
\frac{D T}{D t}=\frac{\partial}{\partial x_{k}}\left\{\left(\frac{\nu}{P r}+\frac{\nu_{t}}{\sigma_{t}}\right) \frac{\partial T}{\partial x_{k}}\right\}+\frac{Q_{g e n}}{\rho c_{p}}
$$

where $Q_{\text {gen }}=\mu_{\text {eff }} \Phi_{v}+\rho_{m} \epsilon$. Usually, $\rho_{m} \epsilon \ll \mu_{\text {eff }} \Phi_{v}$.

Comments on EDM - L27 ($\frac{11}{19}$)

(1) The model is very convenient because ν_{t} is obtained from mixing length, or one- or two-eqn models and $P r_{T}$ is an absolute constant
(2) The disadvantage is that $\alpha_{t}=0$ where $\nu_{t}=0$. In several flows, significant temperature gradients and hence heat transfer exist in regions where $\nu_{t}=0$.
(3) Like ν_{t}, α_{t} is also isotropic. But, measurement of decay of non-axi-symmetric temperature profiles in a fully developed turbulent flow in a pipe suggests that the ratio of tangential to radial diffusivities ($\alpha_{t, \theta} / \alpha_{t, r}$) >>1 near the wall.
(9) Therefore, in general, $\overline{u_{i}^{\prime} T^{\prime}}$ must be obtained directly from its differential transport equation.

$\overline{u_{i}^{\prime} T^{\prime}}$ Eqn - L27($\left.\frac{12}{19}\right)$

Eqn for $\overline{u_{i}^{\prime} T^{\prime}}$ is derived by multiplying Eqn for \hat{T} by u_{i}^{\prime} and Eqn for \hat{u}_{i} by T^{\prime} - addition and time-averaging gives.

$$
\begin{aligned}
\frac{\partial \overline{u_{i}^{\prime} T^{\prime}}}{\partial t}+u_{k} \frac{\partial \overline{u_{i}^{\prime} T^{\prime}}}{\partial x_{k}} & =-\left[\overline{\left.\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial T}{\partial x_{k}}+\overline{u_{k}^{\prime} T^{\prime}} \frac{\partial u_{i}}{\partial x_{k}}\right]}\right. \\
& -\frac{\partial}{\partial x_{k}}\left[\overline{u_{i}^{\prime} u_{k}^{\prime} T^{\prime}}+\overline{\frac{p^{\prime} T^{\prime}}{\rho}} \delta_{i k}-\alpha \frac{\partial \overline{u_{i}^{\prime} T^{\prime}}}{\partial x_{k}}\right] \\
& +\frac{\overline{p^{\prime}}}{\rho}\left\{\frac{\partial T^{\prime}}{\partial x_{i}}\right\}-(\nu+\alpha) \frac{\left\{D_{T}\right\}}{\partial x_{k}} \overline{\partial u_{k}^{\prime}} \frac{\partial T^{\prime}}{\partial x_{k}} \\
\left\{R D_{T}\right\} & \left\{D i s_{T}\right\}
\end{aligned}
$$

Modeling $\overline{u_{i}^{\prime} T^{\prime}}$ Eqn $-\operatorname{L27}\left(\frac{13}{19}\right)$

(1) Like $P S_{i j}$, Redistribution term $R D_{T}$ is modeled as

$$
\begin{aligned}
R D_{T} & =-C_{T 1} \frac{\epsilon}{e} \overline{u_{i}^{\prime} T^{\prime}}+C_{T 2} \overline{\bar{u}_{k}^{\prime} T^{\prime}} \frac{\partial u_{i}}{\partial x_{k}} \\
& =-0.5 \frac{\epsilon}{e} \overline{u_{n}^{\prime} T^{\prime}} \frac{e^{3 / 2}}{\epsilon L_{B}}(\text { for } \operatorname{Pr}>1) \\
& =-\left\{C_{T 1}+0.5\left(\frac{\operatorname{Pr}+1}{\operatorname{Pr}}\right)\right\} \frac{\epsilon}{e} \overline{u_{i}^{\prime} T^{\prime}} \quad(\text { for } \operatorname{Pr} \ll 1)
\end{aligned}
$$

(2) At high $R e_{t}$ or (Peclet), the task of Destruction is performed by $R D_{T}$. Hence, $D i_{T}=0$.
(3) In the diffusion term, effect of p^{\prime} is either neglected or taken to be $0.2 \times \overline{u_{i}^{\prime} u_{k}^{\prime} T^{\prime}}$ where

$$
-\overline{u_{i}^{\prime} u_{k}^{\prime} T^{\prime}}=C_{T} \frac{e}{\epsilon}\left[\overline{u_{j}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{i}^{\prime} T^{\prime}}}{\partial x_{j}}+\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{j}^{\prime} T^{\prime}}}{\partial x_{j}}\right]
$$

Solving $\overline{u_{i}^{\prime} T^{\prime}}$ Eqn - $\operatorname{L27}\left(\frac{14}{19}\right)$

(1) The model constants are: $C_{T 1}=3.6, C_{T 2}=0.266$ and $C_{T}=0.11$.
(2) Required correlations are taken as

$$
-\overline{\overline{u_{i}^{\prime}} T^{\prime}}=\frac{\nu_{t}}{P r_{T}} \frac{\partial T}{\partial x_{i}} \text { and }-\overline{\overline{u_{i}^{\prime} u_{j}^{\prime}}}=\nu_{t} S_{i j}
$$

(3) ν_{t} is determined from e and ϵ Eqns
(a) For complete range of Prandtl numbers, Pr_{T} is modeled as

$$
\operatorname{Pr}_{T}=0.85+0.0309\left\{\frac{P r+1}{P r}\right\}
$$

Algebraic Flux Model - L27($\left.\frac{15}{19}\right)$

(1) Eqn for scalar fluctuations is derived as

$$
\begin{aligned}
\frac{D T^{\prime 2} / 2}{D t} & =-\frac{\partial}{\partial x_{i}}\left[\frac{\overline{u_{i}^{\prime} T^{\prime 2}}}{2}-\alpha \frac{\partial}{\partial x_{i}}\left\{\overline{\left.\left.\frac{T^{\prime 2}}{2}\right\}\right]}\right.\right. \\
& -\overline{\overline{u_{i}^{\prime} T^{\prime}}} \frac{\partial T}{\partial x_{i}}-\alpha \overline{\left(\frac{\partial T^{\prime}}{\partial x_{i}}\right)^{2}}
\end{aligned}
$$

where $\alpha \overline{\left(\frac{\partial T^{\prime}}{\partial x_{i}}\right)^{2}}=\epsilon_{T} \propto \frac{e}{\epsilon} \overline{T^{\prime 2}}$
(2) The AFM is derived from

$$
\begin{aligned}
\frac{D \overline{u_{i}^{\prime} T^{\prime}}}{D t}-\operatorname{Diff}\left(\overline{u_{i}^{\prime} T^{\prime}}\right) & =\left[\frac{(P-\epsilon)_{e}+(P-\epsilon)_{\overline{T^{\prime 2}}}}{2}\right] \frac{\overline{u_{i}^{\prime} T^{\prime}}}{e \sqrt{T^{\prime 2}}} \\
\overline{T^{\prime 2}} & =C_{T}^{\prime} \frac{e}{\epsilon} \overline{u_{i}^{\prime} T^{\prime}} \frac{\partial T}{\partial x_{k}} \text { prod }=\text { diss assumec }
\end{aligned}
$$

where $C_{T}^{\prime} \simeq 1.6$ for $\operatorname{Pr} \geq 1$.

Evidence from DNS - Pipe flow - L27($\left.\frac{16}{19}\right)$

(1) Mean T profiles for pipe flow agreed with DNS
(2) Location of peak $\overline{T^{\prime 2}}$ shows that production shifts towards larger y^{+}as Pr decreases.
(1) $\overline{u^{\prime} T^{\prime}}$ budget is similar to e-budget
(2) $\overline{v^{\prime} T^{\prime}}$ budget resembles $\overline{u^{\prime} v^{\prime}}$ budget justifying Eddy Diff model for this case.

Combustion and Turbulence - 1-L27($\frac{17}{19}$)

(1) In Combustion it is necessary to solve differential eqns for all participating species k.

$$
\frac{\partial\left(\rho_{m} \omega_{k}\right)}{\partial t}+\frac{\partial\left(\rho_{m} u_{j} \omega_{k}\right)}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left[\rho_{m} D_{\text {eff }} \frac{\partial \omega_{k}}{\partial x_{j}}\right]+R_{k}
$$

where $R_{k}=$ rate of species generation/consumption.
$D_{\text {eff }}=\nu / S c+\nu_{t} / S C_{t}$ and $S C_{t} \simeq 0.9$.
(2) The simplest postulate is called the Simple Chemical Reaction (SCR) that is written as
1 kg of Fuel $+R_{\text {st }} \mathrm{kg}$ of Oxidant $=\left(1+R_{s t}\right) \mathrm{kg}$ of Product There are only three species Fuel, Oxidant air and Products and $R_{s t}=(A / F)_{\text {stoich }}$
(3) $R_{o x}=R_{s t} \times R_{f u}$ and $R_{p r}=-\left(1+R_{s t}\right) \times R_{f u}$. In laminar flow

$$
R_{f u}=-A \exp \left(\frac{-E}{R_{u} T}\right) \omega_{f u}^{m} \omega_{o x}^{n} \quad \text { (A and } E \text { are fuel-specific) }
$$

Combustion and Turbulence-2-L27($\frac{18}{19}$)

(1) In turbulent combustion, however, it is observed that outer edges of flames are very intermittent and jagged.
(2) Experimentally it is observed that even if time-averaged $\bar{\omega}_{f u}$ and $\bar{\omega}_{o x}$ are high, $R_{f u}$ rates are not as high as would be expected from the Arrhenius formula
(3) This is because, the fuel and oxidant at a given point are present at different times. Clearly, therefore, time scales of chemical reaction and turbulence are important. These are characterised by $S_{L} / u_{r m s}^{\prime}$ where S_{L} is the laminar flame speed of the fuel.
(9) These ideas are captured ${ }^{3}$ in

$$
R_{f u}=-C_{e b u} \rho_{m} \sqrt{\overline{\left(\omega_{f u}^{\prime}\right)^{2}}} \frac{\epsilon}{e} \simeq-C_{e b u} \rho_{m} \overline{\omega_{f u}} \frac{\epsilon}{e}
$$

${ }^{3}$ Spalding D. B. Development of Eddy-Breakup Model of Turbulent Combustion, 16th Symposium on Combustion, p 1657, 1976

Combustion and Turbulence-3-L27($\frac{19}{19}$)

(1) In practical computing, the applicability of the EBU has been enhanced by the following variant

$$
R_{f u}=-\rho_{m} \frac{\epsilon}{e} \operatorname{Min}\left\{A \bar{\omega}_{f u}, \frac{A}{R_{s t}} \bar{\omega}_{o x}, \frac{A^{\prime}}{1+R_{s t}} \bar{\omega}_{\text {prod }}\right\}
$$

where $\mathrm{A}=4$ and $A^{\prime} \simeq 2$.
(2) In the next lecture, we shall discuss tow important aspects of turbulent flows: (a) Laminar-to-Turbulent Transition and (b) Effect of Wall Roughness

