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Main Tasks - L26( 1
20)

1 In multidimensional turbulent wall flows, even if inner-layer
universality is exploited , RANS eqns must be solved in the
outer layers through modeling

2 Thus, turbulent stresses u′
i u′

j and heat fluxes ρ cp u′
i T ′

must be modeled to recover lost information through
averaging

3 This recovery must be carried out in a general way so that
the model need not be changed from one flow situation to
another

4 Imparting absolute generality to turbulence models has,
however, turned out to be quite a difficult task.

5 Thirdly, the model must be economical; that is, the
computational expense ( and ease ) must not be very much
in excess of that which would be required for computation of
a laminar flow under the same situation.
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Two Main Approaches - L26( 2
20)

1 Relating u′
i u′

j to the mean rate of strain Sij through a
property called the turbulent- or eddy- viscosity µt . This
approach derives its inspiration from the Stokes’s
stress-strain relations.

2 Recovering distribution of stresses from solution of
transport equations for u′

i u′
j in which convection and

diffusion of this quantity is principally balanced by rates of
its production and dissipation.

In this lecture, we shall consider the most popular
Eddy-viscosity models
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The main idea - L26( 3
20)

1 The notion of µt introduced by Boussinesque can be
generalised to read as:

−ρ u′
i u′

j = µt

[
∂ui

∂xj
+

∂uj

∂xi

]
− 2

3
ρ e δij

where, µt is a property of the flow; not that of a fluid . µt is
isotropic although its magnitude may vary with the position
in the flow .

2 The term involving Kronecker delta δij simply ensures that
the sum of the normal stresses ( i = j ) will equal 2 ρ e and
thus, the definition of TKE is retrieved since the sum of the
strain rates ( ∂ui/∂xi = 0 ) is zero from requirement of
continuity.

3 Using this model, number of unknowns ( ui and p ) equals
number of RANS eqns when µt is modeled.
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Characterising µt - L26( 4
20)

1 From kinetic theory, laminar viscosity µ is written in
dimensionally correct form as

µ = ρ× lmfpl × umol

where lmfpl is mean free path length and umol is average
molecular velocity.

2 Analogously, µt is modeled as

µt = ρ× L× |u′|

where L and |u′| are representative length and velocity
scales of turbulent fluctuations.

3 The main task now is to represent L and |u′| universally.
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General Mixing Length Model - L26( 5
20)

1 Simplest model - |u′| ∝ lm × |mean velocity gradient|
2 Hence,

µt = ρm l2
m

{
∂ui

∂xj
(
∂ui

∂xj
+

∂uj

∂xi
)

}0.5

summation,

where L = lm is called Prandtl’s mixing length

lm = κ× n × (1− e−ξ) ξ =
1

26
n
ν

√
τw

ρm
=

n+

26

lm = 0.2× κ× R , if n+ > 26 ,

where n is the normal distance from the nearest wall and
κ ' 0.41, R is a characteristic dimension, and wall shear
stress τw is evaluated from the product of µ and total vel
gradient ∂V/∂n|wall
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lm for 2D Boundary Layers - L26( 6
20)

1 For 2D BLs, µt = ρm l2
m (∂u/∂y)

2 For inner and outer wall boundary layers, from lecture 24

lm = κ× y × (1− e−
y+

A+ )

A+ =
25

a
[
v+

w + b
{

p+

1+c v+
w

}]
+ 1

3 For Free Shear Layers such as jets and wakes,

lm = β y1/2

where y1/2 is the half-width of the shear layer and
β = 0.225 ( a plane jet ), = 0.1875 ( a round jet ),
= 0.40 ( a plane wake ).
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One Eqn Model - 1 - L26( 7
20)

1 The mixing length model predicts that −ρ u′
i u′

j = 0 where
the strain rate Sij = 0. In many situations this is not found.
For example, in an annulus with outer wall rough and inner
wall smooth, the plane of zero shear stress is closer to the
smooth wall than the plane of zero vel gr.

2 Hence, we take the fluctuating velocity scale |u′| =
√

e .
Then, µt = ρ× L×

√
e where L = Integral Length Scale .

3 The distribution of TKE (e) is determined from

ρ

[
∂e
∂t

+ uj
∂e
∂xj

]
= − ∂

∂xj

[
u′

j (p
′ + ρ

u′
i u

′
i

2
)− µ

∂e
∂xj

]

+ (−ρu′
i u

′
j )

∂ui

∂xj
− µ (

∂u′
i

∂xj
)2
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Modeling TKE - L26( 8
20)

1 The turbulent diffusion term cannot be directly measured
because no probe can simultaneously measure pressure
and velocity fluctuations

2 But, noting the redistributive character of this term, we may
assume gradient diffusion. Hence,

−u′
j (p

′ + ρ
u′

i u
′
i

2
) =

µt

σe

∂e
∂xj

where, σe is a turbulent Prandtl number for TKE.
3 Recall that when Ret is high, dissipation can be

represented in terms of large scale fluctuations. Hence,

µ (
∂u′

i

∂xj
)2 = CD

ρ e3/2

L
= ρ ε
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Modeled TKE Eqn L26( 9
20)

Replacing −ρ u′
i u′

j = µt Sij

ρ

[
∂e
∂t

+ uj
∂e
∂xj

]
=

∂

∂xj

[
(µ +

µt

σe
)

∂e
∂xj

]
+ µt

[
∂ui

∂xj
+

∂uj

∂xi

]
∂ui

∂xj
− CD

ρ e3/2

L

where CD and σe are expected to be universal constants
when Ret = L

√
e/ν is high ( that is away from the wall and

beyond the transition layer ).
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Determination of CD and σe - L26( 10
20)

1 Recall that in the fully turbulent inner layer, production '
dissipation ( lecture 24 ) and equilibrium conditions prevail.

2 In this layer, τt = µt ∂V/∂n. Hence

τt
∂V
∂n

= ρ
√

e L (
∂V
∂n

)2 = CD
ρ e3/2

L

where V is vel. parallel to the wall and n is normal distance.
3 Also, in this layer τt ' τw . Hence, (τw/ρ)/ e = u2

τ / e =
√

CD

4 Recall that τw ' 0.3 ρ e. Hence, CD ' 0.09
5 σe is taken as 1.0 from numerical experiments in several

flow situations.
6 Hence, the modeled TKE eqn can be solved. We must now

specify L.
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Specification of L - L26( 11
20)

1 L is determined as follows. Consider

µt (
∂V
∂n

)2 = CD
ρ e3/2

L
(equilibrium condition)

µt = ρ e0.5 L (definition)

2 Eliminating e from these two equations,
µt = C−0.5

D ρ L2 (∂V/∂n)
3 Comparing this equation with eqn with mixing length model

L = C0.25
D lm = 0.5477 lm → lm = κ y

4 With these specifications of L, µt , CD and σe, TKE equation
can be solved along with the RANS momentum equations.
In general flows, however, further refinements are needed.
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Two-Equation Model - L26( 12
20)

1 For the more general case of turbulent flows involving
strong and variable pressure gradients, flow recirculation,
effects of swirl or buoyancy etc.,it is necessary to devise
means for determining distribution of L in multidimensional
flows.

2 Dividing the energy spectrum e(k) by wave number k and
integrating from 0 to ∞, an equation for L in the spectral
space can indeed be derived since, L = 1

e

∫∞
0

e(k)
k dk .

However, the eqn is not tractable in the physical space.
3 A length-scale equation, however, need not necessarily

have L itself as its dependent variable; any combination of
the form Z = em Ln will suffice since e can be known from
solution of modeled TKE equation
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Proposals for Z = em Ln Eqn - L26( 13
20)

ρ

[
∂Z
∂t

+ uj
∂Z
∂xj

]
=

∂

∂xj

[
(µ +

µt

σZ
)

∂Z
∂xj

]
+ C1

Z
e

P − C2 Z
ρ
√

e
L

+ S (Z )

where, P = −ρu′
i u

′
j ∂ui/∂xj and C1, C2 are constants when

Ret = e0.5L/ν is high.
Proposals for Z = em Ln

m n Remark
3/2 -1 Dissipation Rate ( ε Eqn )
1 1 ( eL Eqn )
1 - 2 Vorticity Fluctuation ( e / L2 Eqn )

1/2 1 Turbulent viscosity ( e0.5 L Eqn )
Computational experience suggests that for Z = (e3/2/ L) ∝ ε,
S ( Z ) = 0 and σZ = const . Hence, Dissipation eqn preferred .
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Dissipation eqn - 1 - L26( 14
20)

At high Ret , local isotropy prevails. Hence an eqn for
ε = ν (∂u′

i /∂xj)2 can be derived by differentiating N-S Eqn for u
′

i
w.r.t. xj and then multiplying by 2 ν (∂u

′

i /∂xj). Time averaging
gives exact ε Eqn .[

∂ε

∂t
+ uk

∂ε

∂xk

]
= −ν

∂

∂xk

[
u′

k (
∂u′

i

∂xj
)2 +

1
ρ

∂p′

∂xj

∂u′
k

∂xj
− ∂ε

∂xk

]

− 2 ν

[
∂u′

i

∂xj

∂u′
k

∂xj
+

∂u′
j

∂xi

∂u′
j

∂xk

]
∂ui

∂xk

− 2 ν
∂u′

i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj
− 2

[
ν

∂2 u′
i

∂xk ∂xj

]2
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Dissipation eqn - 2 - L26( 15
20)

Complex correlations can only be discerned from DNS.

Diffusion = −ν
∂

∂xk
(u′

k (
∂u′

i

∂xj
)2 +

1
ρ

∂p′

∂xj

∂u′
k

∂xj
)

=
∂

∂xk

{
C3

e2

ε

∂ε

∂xk

}
→ u′

j u
′
k ∝ e (assumption)

Generation = − 2 ν (
∂u′

i

∂xj

∂u′
k

∂xj
+

∂u′
j

∂xi

∂u′
j

∂xk
)

∂ui

∂xk

= C1 u′
i u

′
j

ε

e
∂ui

∂xj

last 2 terms = − 2 ν
∂u′

i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj
− 2 (ν

∂2 u′
i

∂xk ∂xj
)2

= C2
ε2

e
(Relevant in inertial subrange)
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Dissipation eqn - 3 - L26( 16
20)

Modeled dissipation equation[
∂ε

∂t
+ uk

∂ε

∂xk

]
=

∂

∂xk

{
(ν + C3

e2

ε
)

∂ε

∂xk

}
− C1 u′

i u
′
k

ε

e
∂ui

∂xk
− C2

ε2

e

But µt = ρ
√

e L = CD
ρ e2

ε
Hence,

ρ

[
∂ε

∂t
+ uk

∂ε

∂xk

]
=

∂

∂xk

{
(µ +

µt

σε

)
∂ε

∂xk

}
+ C1 (−ρ u′

i u
′
k) (

ε

e
)

∂ui

∂xk
− C2

ρ ε2

e

where −ρ u′
i u

′
k = µt [∂ui/∂xk + ∂uk/∂xi ] and

σε ≡ turbulent Prandtl number for dissipation rate. It absorbs
constants CD and C3.
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High Ret e-ε Model Eqns - L26( 17
20)

ρ
D e
Dt

=
∂

∂xj

[
(µ +

µt

σe
)

∂e
∂xj

]
+ µt

[
∂ui

∂xj
+

∂uj

∂xi

]
∂ui

∂xj
− ρ ε

ρ
D ε

Dt
=

∂

∂xj

[
(µ +

µt

σε

)
∂ε

∂xj

]
+

ε

e

{
C1 µt

[
∂ui

∂xj
+

∂uj

∂xi

]
∂ui

∂xj
− C2 ρ ε

}
Boundary layer Forms

ρ

[
∂e
∂t

+ u
∂e
∂x

+ v
∂e
∂y

]
=

∂

∂y

{
(µ +

µt

σe
)

∂e
∂y

}
+ µt (

∂u
∂y

)2 − ρ ε

ρ

[
∂ε

∂t
+ u

∂ε

∂x
+ v

∂ε

∂y

]
=

∂

∂y

{
(µ +

µt

σε

)
∂ε

∂y

}
+

ε

e

{
C1 µt (

∂u
∂y

)2 − C2 ρ ε

}
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Determination of C1, C2 and σε - L26( 18
20)

From the experimental data on decay of homogeneous
turbulence behind a grid in a wind-tunnel, it is found that e ∝ t−n

where, for t → 0, 1 < n < 1.2. In this flow, both production and
diffusion are absent and v = 0. Hence

De
Dt

=
∂e
∂t

+ u
∂e
∂x

= −ε and
Dε

Dt
=

∂ε

∂t
+ u

∂ε

∂x
= −C2

ε2

e

Simultaneous solution gives C2 = (n + 1)/n. Therefore,
taking n = 1.1 (say), C2 = 1.91.
To determine C1, consider inner turbulent layer where conv = 0,
νt >> ν and production νt (∂u/∂y)2 = ε dissipation. Hence ε
Eqn will read as

∂

∂y

{
µt

σε

∂ε

∂y

}
=

ε2

e
(C2 − C1)
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Continued . . . - L26( 19
20)

In the inner layer, logarithmic law u+ = ln (E y+)/κ gives

∂u
∂y

=
uτ

κ y
=

τw

ρ νt
=

u2
τ

νt
→ νt = uτ κ y

Hence, since Prod = Diss

ε = νt (
∂u
∂y

)2 =
u3

τ

κ y
→ ∂ε

∂y
= − u3

τ

κ y2

Therefore ε Eqn becomes

∂

∂y

{
uτκ y

σε

× (− u3
τ

κ y2
)

}
=

u4
τ

σε y2
=

u6
τ

κ2 y2 e
(C2 − C1)

Or,
κ2

σε

= (C2 − C1)
u2

τ

e
→ C1 = C2 −

κ2

σε

√
CD

= 1.44

where σε = 1.3 ( from num. comp. ), CD = 0.09 and κ = 0.41
() March 9, 2011 21 / 1



Wall-Function BCs - L26( 20
20)

1 Wall BCs are given at 1st
grid node in the inner turb
layer

2 Then, τw = µeff (∂u/∂y)p =
µeff (up/yp). Hence,
µeff /yp = (ρ uτ κ)/ln (E y+

p )

where uτ = C0.25
D e0.5

p .
3 In e-Eqn Prod =

τw (∂u/∂y)p = µeff (up/yp)
2

4 εp = y−1
p

∫ yp

0 ε dy
= y−1

p

∫ yp

0 (τw/ρ)(∂u/∂y) dy
= (u2

τ up)/yp

= C0.75
D e1.5

p ln (E y+
p )/(κ yp)

P

YP YP
+30  < <  100

WALL

Grid  Lines 

Hence, BCs are effected as

Sourcee = µeff (up/yp)
2 − ρ εp

εp =
C0.75

D e1.5
p

κ yp

Gives computational economy.
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