ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-24 NEAR-WALL TURBULENT FLOWS-1

LECTURE-24 NEAR-WALL TURBULENT FLOWS-1

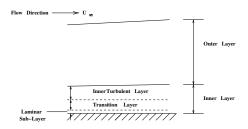
- Law of the wall for Inner Layer
- Prandtl's mixing length and van-Driest Hypothesis
- Treatment of Outer layer

Main Postulate L24(1/18)

- So far we considered turbulent flows in which large eddy structure dominates and *diffusive* influence of μ is small. Such flows occur *away from the wall* where y / δ or y / R > 0.1.
- Greatest resistance to heat and mass transfer rates, however, is confined to near-wall viscosity affected region.
- It is also a fortunate occurance that the more significant characteristics of this region are almost *universal*
- What are the characteristics of this Inner layer ?

Law of the wall - 1 - L24($\frac{2}{18}$)

- The Inner layer y/ $\delta \approx 0.15$ comprises 3 layers
 - Laminar-like viscous sub-layer. In reality, this layer is characterised by a repeated but infrequent fluid bursts.
 - Next, the transition layer likened to the inertial sub-range of the energy spectrum
 - Next, the inner turbulent layer



Phenomenologically,

 $u = F(y, \tau_w, \mu, \rho, others)$

where others include parameters - BL thickness δ (or radius R), dp/dx, v_w , wall roughness height y_r

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Law of the wall - 2 - L24($\frac{3}{18}$)

- Experimental evidence, however, shows that for a smooth, impermeable surface the inner layer is almost completely free of all the *other* parameters.
- 2 Independence from δ suggests that no information travels from the outer parts to the inner region.
- Independence from dp/dx suggests that the inner region is independent of the *history* of the flow except that τ_w may depend on the upstream events. The structure of turbulence is thus presumed to be in *local equilibrium*; that is, the timescale of the eddies << the time taken by the mean flow to change its structure appreciably in response to dp/dx.
- This assumption of *local equilibrium* is valid for adverse and mildly favourable dp/dx, but not when *re-laminarisation* is encountered in highly accelerated BLs $(\nu/U_{\infty}^2 dU_{\infty}/dx > 3 \times 10^{-6})$.

Law of the wall - 3 - L24($\frac{4}{18}$)

 μ and y are relevant because at the wall, $\tau_w = \mu \frac{\partial u}{\partial y}$. ρ is included due to the importance of momentum transfer resulting from velocity fluctuations in the transition and the fully turbulent layers. Therefore, dimensional analysis gives

$$\begin{array}{lll} \frac{\rho \ u^2}{\tau_w} &=& F\left(\frac{\rho \ y^2 \ \tau_w}{\mu^2}\right) & \text{Define} \\ u_{\tau} &\equiv& \sqrt{\tau_w / \rho} & (\text{Friction velocity}) & u^+ \equiv \frac{u}{u_{\tau}} & y^+ \equiv \frac{y \ u_{\tau}}{\nu} \\ \text{or } u^+ &=& F\left(y^+\right) & (\text{ universal 'law of the wall' }) \end{array}$$

We now seek form of $F(y^+)$ in three parts of the inner layer.

Variation of shear stress - L24($\frac{5}{18}$) In the inner layer, the BL form of RANS eqn will read as

$$\rho \left[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{d p}{d x} + \frac{\partial \tau_{tot}}{\partial y} - \rho \left[\frac{\partial}{\partial x} \left(\overline{u'^2} - \overline{v'^2} \right) \right]$$
$$\tau_{tot} = \tau_l + \tau_t = \mu \frac{\partial u}{\partial y} - \rho \overline{u' v'}$$

The terms in sq brackets on RHS are important only in hightly accelerated flows - hence ignored. Then, since $u (\partial u / \partial x) \simeq 0$ and $v \simeq v_w$,

$$\begin{array}{lll} \frac{\partial \tau_{tot}}{\partial y} &\simeq & \frac{d p}{d x} + \rho \ v_w \ \frac{\partial u}{\partial y} \ \rightarrow & \text{intergration gives} \\ \frac{\tau_{tot}}{\tau_w} &= & 1 + \frac{y}{\tau_w} \ \frac{d p}{d x} + \frac{\rho \ v_w \ u}{\tau_w} = 1 + p^+ \ y^+ + v_w^+ \ u^+ \\ p^+ &\equiv & \frac{\nu}{\rho \ u_\tau^3} \ \frac{d p}{d x} \qquad v_w^+ \equiv \frac{v_w}{u_\tau} \ \text{(Definitions)} \end{array}$$

Forms of F (y^+) - 1 - L24($\frac{6}{18}$)

To begin with, we assume that $dp/dx = v_w = 0$. Then, $\tau_{tot} = \tau_w = const.$ Hence,

- In Laminar sub layer τ_{tot} = τ_w = τ_l = μ ∂u/∂y or, upon integration, u = (τ_w y)/μ + C where C = 0 since, u = 0 at y = 0. Hence, rearrangement gives u/u_τ = y u_τ/ν or, u⁺ = y⁺.
- When dp/dx is moderate, eqn for $\partial \tau_{tot} / \partial y$ shows that 2nd and 3rd dervatives of u w.r.t. y will be nearly zero. Hence, expanding in Taylor's series about $y^+ = 0$, yields:

$$u^+ = y^+ + \frac{y^{+^4}}{4!} \frac{\partial^4 u}{\partial y^{+^4}} + \dots$$

This equation shows that for small values of y⁺, equation u⁺ = y⁺ holds; but at some critical distance away from the wall, u⁺ must abruptly depart from linearity.

Forms of F (y^+) - 2 - L24($\frac{7}{18}$)

- In the Transition Layer, there are no simple arguments because viscous and turbulent stresses are equally important.
- There is however similarity between the inertial sub-range of the energy spectrum and the transitional layer.
- Solution If u' is a representative fluctuation then, the viscous lengthscale is $(\nu/u') << \delta$ if the $Re_t = (u' \delta)/\nu$ is high.
- A layer covering a range of values of y can therefor be imagined in which the turbulence structure is independent of both δ and the viscous lengthscale ν / u' .
- Solution Thus, $\partial u/\partial y$ can only depend on (u'/y). Now, if local value of u' is taken as u_{τ} then, $\partial u/\partial y \propto u_{\tau}/y$. Hence

$$u^{+} = \frac{1}{\kappa_{tr}} \ln(y^{+}) + C_{tr} = \frac{\ln(E_{tr} y^{+})}{\kappa_{tr}} \rightarrow C_{tr} = \frac{\ln(E_{tr})}{\kappa_{tr}}$$

Expected departure from linearity is indeed obsreved.

Forms of F (y^+) - 3 - L24($\frac{8}{18}$)

- In Turbulent Layer , the universal law can be written as $(\partial u/\partial y) = (u_{\tau}^2/\nu) \partial F/\partial y^+$
- (∂u/∂y) cannot be expected to be influenced by µ because τ_t >> τ_l. As such, ∂F/∂y⁺ must be independent of ν and, from dimensional considerations, proportional to ν/u_τ y or 1/y⁺.
- Therefore

$$rac{\partial u^+}{\partial y^+} \propto \; rac{1}{y^+} \;
ightarrow u^+ = \; rac{1}{\kappa} \; \ln(y^+) + C = \; rac{1}{\kappa} \; \ln(\; E \; y^+)$$

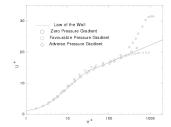
Like the transition layer, the turbulent layer law is again logarithmic.

くぼう くほう くほう

Universal Law of the wall - L24($\frac{9}{18}$) Exp data for pr gr param

$$K = \frac{\delta_2}{U_\infty} \, \frac{d \, U_\infty}{d \, x}$$

 $K = -1.434 \times 10^{-3}$ (Adv pr gr) K = 0 (zero pr gr) $K = 1.44 \times 10^{-3}$ (fav pr gr)



 $\begin{array}{rcl} u^+ &=& y^+ \ \mbox{ for } (y^+ \le 5) \ \mbox{Lam SL} \\ u^+ &=& 5.0 \ \mbox{ln}(y^+) - 3.05 \ \ \mbox{for } (5 \le y^+ \le 30) \ \ \mbox{Trans L} \\ u^+ &=& 2.44 \ \mbox{ln}(y^+) + 5.4 \ \ \mbox{for } (y^+ \ge 30) \ \ \mbox{Turb L} \end{array}$

Valid upto $y^+ \simeq 700$ for K = 0; upto $y^+ \simeq 100$ for K >0; and upto $y^+ \simeq 300$ for K < 0. For pipe flow (mildly fav pr gr), valid upto $y^+ \simeq 700$. In general, valid for $y^+ \le 100$.

Thickness of Inner Layer - L24($\frac{10}{18}$)

- The general limit of $y^+ \le 100$ corresponds to ~ 15 % of the width of the shear layer.
- Solution For example, in a pipe flow, *f* = 0.046 $Re_D^{-0.2} = 2 (u_\tau/\overline{u})^2$. Then for $Re_D = 30,000$ (say), $R^+ = R u_\tau/\nu = 0.0758 \times Re_D^{0.9} = 811$. Therefore, *y_{inner}/R* = 100 / 811 = 0.12 or 12 %.
- Solution The constants in the logarithmic region are: $\kappa_{tr} = 0.2, C_{tr} = -3.05 \text{ and } E_{tr} = 0.543 \text{ (Transition).}$ $\kappa = 0.41, C_{tr} = 5.4 \text{ and } E = 9.512 \text{ (Turbulent)}$
- Rather than a 3-layer universal law, we now seek a continuous law of the wall from theory. Recall that the 3-layer law is based on ignorance of the bursting phenomenon in the Lam sub layer which, in turn, will influence the heat/mass transfer rates at the wall. Also, effects of dp/dx and v_w were ignored.

Prandtl's mixing length-1 - L24(¹¹/₁₈)

- In analogy with the Stokes's law for laminar shear stress $\tau_l = \mu \partial u / \partial y$, we introduce a model due to Boussinesq, $\tau_t = -\rho u' v' = \mu_t (\partial u / \partial y)$.
- Prandtl suggested that

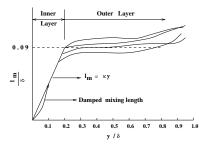
$$\mu_t = \rho I_m \mathbf{v}' \rightarrow \mathbf{v}' \simeq I_m \left| \frac{\partial u}{\partial \mathbf{y}} \right|$$
$$\tau_t = \rho I_m^2 \left| \frac{\partial u}{\partial \mathbf{y}} \right| \frac{\partial u}{\partial \mathbf{y}}$$

where v' is velocity fluctuation responsible for transverse momentum transfer and I_m is mean eddy size in the inner layer. Note that unlike μ , turbulent viscosity μ_t is a property of the flow.

Prandtl's mixing length-2 - L24(¹²/₁₈)

Transition layer is characterised neither by δ nor by ν/ν' . The only relevent scale is y. Prandtl extended this argument to the entire inner layer and proposed that $l_m = \kappa y$.

The Fig shows Exp data for BLs with diff dp/dx and v_w inferred from measurement of $\tau_t = -\rho \overline{u' v'}$ and $\partial u/\partial y$. For 0.2 < y/ δ < 0.9, the values show a scatter about $I_m/\delta = 0.09$



For $(y/\delta) < 0.2$, I_m is nearly $\propto y$ with $\kappa \sim 0.41$. Very close to the wall, however, I_m is somewhat lower (damped) than that suggested by $I_m = \kappa y$.

3 > 4 3

Van-Driest Hypothesis - L24(¹³/₁₈)

- In the region where $I_m = \kappa y$ holds, $\tau_t = \tau_w = \rho (\kappa y)^2 (\partial u / \partial y)^2$ or, taking the sq root, $\partial u^+ / \partial y^+ = 1/\kappa y^+$. This integrates to $u^+ = \ln (E y^+)/\kappa$ for the turbulent inner layer.
- To include effects of fluctuations on the transition and laminar sub layer, Van-Driest proposed

$$I_m = \kappa y \left[1 - \exp(-\frac{y^+}{A^+}) \right]$$

or $\mu_t = \rho (\kappa y)^2 \left[1 - \exp(-\frac{y^+}{A^+}) \right]^2 \frac{\partial u}{\partial y}$

where for a smooth wall, $A^+ \simeq 26$. Note that μ_t is zero only at the wall and in regions where viscosity is influential ($y^+ < 30$), I_m is smaller than Prandtl's mixing length. The amplitude of fluctuations decrease exponentially as $y \to 0$.

(

Continuous Law - L24(¹⁴/₁₈)

To prduce a continuous law of the wall, recall that

$$\begin{aligned} \frac{\tau_{tot}}{\tau_w} &= \mathbf{1} + \mathbf{p}^+ \mathbf{y}^+ + \mathbf{v}_w^+ \mathbf{u}^+ \\ &= \left[\mathbf{1} + \left[\kappa \mathbf{y}^+ \left\{ \mathbf{1} - \exp(-\frac{\mathbf{y}^+}{\mathbf{A}^+}) \right\} \right]^2 \frac{\partial u^+}{\partial \mathbf{y}^+} \right] \frac{\partial u^+}{\partial \mathbf{y}^+} \end{aligned}$$

- However, if the stress-ratio is assumed to be unity then, the effects of p⁺ and v⁺_w can be absorbed in a suitably defined A⁺.
- 3 Thus, with $\tau_{tot}/\tau_w = 1$, we obtain

$$\frac{\partial u^{+}}{\partial y^{+}} = \frac{-1 + \sqrt{1 + 4a}}{2a} \quad a = \left[\kappa y^{+} \left\{ 1 - \exp(-\frac{y^{+}}{A^{+}}) \right\} \right]^{2}$$
$$u^{+} = \int_{0}^{y^{+}} \frac{\partial u^{+}}{\partial y^{+}} dy^{+} \quad \text{(Continuous Law)}$$
Numerical integration is required.

March 2, 2011

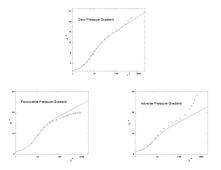
16/20

Predictions - L24($\frac{15}{18}$)

Exptl data for different BLs with different dp/dx and v_w are matched with predcitions tuning A^+ in each case . Kays and Crawford propose

$$A^{+} = \frac{25}{a\left[v_{w}^{+} + b\left\{\frac{p^{+}}{1+c\,v_{w}^{+}}\right\}\right] + 1}$$

with a = 7.1, b = 4.25, c = 10 and if $p^+ > 0$, b = 2.9, c = 0or, if $v_w^+ < 0$, a = 9



Predictions agree very well upto $y^+ = 500$ for Zero pr. gr., upto $y^+ \simeq 100$ for Fav pr. gr. and upto $y^+ \simeq 200$ for Adv. pr. gr.

Outer Layers-1 - L24($\frac{16}{18}$)

- Outer layers can hardly be expected to br universal because the large eddy structure there is severly influenced by dp/dx and other body forces. We need turbulence models for this region.
- Short-cut methods have been developed. For example, for zero pr. gr. BL, vel profiles at different axial locations can be unified by

$$\begin{array}{rcl} \displaystyle \frac{u_{\infty}-u}{u_{\tau}} & = & \mathcal{F}\left(\frac{y}{\delta}\right) = 1-\cos\left(\pi\,\frac{y}{\delta}\right) \ \, (\text{wake function}) \\ \\ \displaystyle u^+ & = & \displaystyle \frac{1}{\kappa}\,\ln(y^+) + \mathcal{C} + \,\frac{\mathcal{A}}{\kappa}\,\left\{1-\cos\left(\pi\,\frac{y}{\delta}\right)\right\} \end{array}$$

where, $A \simeq 0.55$, $\kappa = 0.4$ and C = 5.1.

Outer Layers-2 - L24($\frac{17}{18}$)

- There are limitations. For example, from expt data for ducted flows, $A \simeq 0$. Similarly, for finite dp/dx, A = F(x).
- 2 Also, although u^+ profile is unified, measured v/u_{τ} and τ_w cannot be. Thus, conditions for similarity cannot be established for turbulent BLs as was possible with laminar BLs.
- However, only u-profile similarity can be established from computer curve-fitting of exptl data.

$$\begin{array}{rcl} \displaystyle \frac{u_{\infty}-u}{u_{\tau}} & = & \mathcal{F}\left(\frac{y}{\delta_{3}}\right) & \rightarrow & \delta_{3}\left(x\right) = - \int_{0}^{\infty} \mathcal{F} \, dy \\ \displaystyle \mathcal{G}(x) & = & \int_{0}^{\infty} \mathcal{F}^{2} \, d\left(\frac{y}{\delta_{3}}\right) \end{array}$$

• For $U_{\infty} = C x^m$ BLs and m < 0, $G \simeq 6.2 (\beta + B + 1.43)^{0.482}$ for $(-1 < \beta + B < 12)$ where, $\beta = (\delta_1 / \tau_w) dp/dx$ and $B = \rho v_w u_{\infty} / \tau_{w_{\infty}}$

Summary - L24(¹⁸/₁₈)

- We have shown that although the Inner Layer universality can be established for a wide variety of turbulent flows, Outer layer similarity is difficult to establish.
- For complete description of outer layers, we need to solve the RANS equations via turbulence models. The inner layer universality can be exploited in two ways
 - To derive approximate correlations for f and Nu
 - To specify wall-boundary conditions at y⁺ ~ A⁺ when outer layers are computed by RANS equations. This achieves computational economy.
- To prepare the ground for studying turbulence models, in the next lecture, we shall explore the likely Interaction between Inner and Outer Layers.

・ロト ・ 四ト ・ ヨト ・ ヨト