ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-20 SUPERPOSITION TECHNIQUE

LECTURE-20 SUPERPOSITION TECHNIQUE

- Effect of Axially varying thermal boundary condition on developing heat transfer Pr >> 1
- 2 Axial variation of T_w
- Axial variation of q_w

Axial Variation of T_w - L20($\frac{1}{12}$)

Our thermal entry length solution for Pr >> 1 may be viewed as solution to a step-function $(T_w - T_i)$ at $x = x_0$. Thus, for $x \ge x_0$

$$T - T_i = \begin{bmatrix} 1 - \theta \left(x^* - x_0^*, y^* \right) \end{bmatrix} \left(T_w - T_i \right) \quad \Rightarrow \theta = \frac{I - I_w}{T_i - T_w}$$

Therefore, for arbitrary variation of T_w , we have

$$T - T_i = \int_o^{x^*} [1 - \theta (x^* - x_0^*, y^*)] \frac{dT_w}{dx_0^*} dx_0^* \\ + \sum_{k=1}^{NK} [1 - \theta (x^* - x_{0,k}^*, y^*)] \Delta (T_w - T_i)_k$$

Further Development - 1 - L20($\frac{2}{12}$)

Therefore, the wall heat flux is evaluated as

$$q_{w}(x^{*}) = k \frac{\partial T}{\partial y}|_{y=b} = \frac{k}{b} \frac{\partial T}{\partial y^{*}}|_{y^{*}=1}$$
$$= -\frac{k}{b} \left[\int_{o}^{x^{*}} \theta' \left(x^{*} - x_{0}^{*}, 1\right) \frac{dT_{w}}{dx_{0}^{*}} dx_{0}^{*} \right.$$
$$+ \sum_{k=1}^{NK} \theta' \left(x^{*} - x_{0,k}^{*}, 1\right) \Delta (T_{w} - T_{i})_{k} \right]$$

But, we know that (see lecture 19)

$$\theta'(1) = -\sum_{n=0}^{\infty} A_n \exp(-\frac{8}{3}\lambda_n^2 x^*) \to A_n = -C_n Y'_n(1)$$

Further Development - 2 - L20($\frac{3}{12}$)

Therefore, substitution gives

$$\begin{aligned} q_{w}\left(x^{*}\right) &= \frac{k}{b} \left[\int_{o}^{x^{*}} \sum_{n=0}^{\infty} A_{n} \exp\left\{-\frac{8}{3} \lambda_{n}^{2} \left(x^{*}-x_{0}^{*}\right)\right\} \frac{dT_{w}}{dx_{0}^{*}} dx_{0}^{*} \right. \\ &+ \left. \sum_{k=1}^{NK} \sum_{n=0}^{\infty} A_{n} \exp\left\{-\frac{8}{3} \lambda_{n}^{2} \left(x^{*}-x_{0,k}^{*}\right)\right\} \Delta (T_{w}-T_{i})_{k} \right] \\ T_{b}-T_{i} &= \left. \frac{4b}{k} \int_{0}^{x^{*}} q_{w}\left(x^{*}\right) dx^{*} \right. \\ Nu_{x^{*}} &= \left. \frac{h_{x}\left(4b\right)}{k} = \frac{q_{w}\left(x^{*}\right)}{(T_{w}-T_{b})_{x^{*}}} \times \frac{4b}{k} \end{aligned}$$

H 16

A Problem - L20($\frac{4}{12}$ **)** Let $T_w - T_i = (A + B x^*) \rightarrow dT_w/dx_0^* = B$. Then

$$q_{w}(x^{*}) = \frac{k}{b} \left[\frac{3B}{8} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{2}} \left\{ 1 - exp(-\frac{8}{3}\lambda_{n}^{2}x^{*}) \right\} \right. \\ \left. + A \sum_{n=0}^{\infty} A_{n} exp(-\frac{8}{3}\lambda_{n}^{2}x^{*}) \right] \quad (\text{note } x_{0} = 0) \\ T_{w} - T_{b} = \frac{9B}{16} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{4}} \left\{ 1 - exp(-\frac{8}{3}\lambda_{n}^{2}x^{*}) \right\} \\ \left. + \frac{3A}{2} \sum_{n=0}^{\infty} A_{n} exp(-\frac{8}{3}\lambda_{n}^{2}x^{*}) \right] \\ Nu_{x^{*}} = \frac{q_{w} 4b}{k(T_{w} - T_{b})} \quad \text{as } x \to \infty, Nu_{x} = \frac{8 \sum_{0}^{\infty} A_{n}/\lambda_{n}^{2}}{3 \sum_{0}^{\infty} A_{n}/\lambda_{n}^{4}} = 8.235$$

Strange things happen. T_w reduces to $T_i = 0$ at $x^* = 0.2$. T_b increases from 0 till $x^* = 0.11$ but then falls. $q_w > 0$ for $x^* \le 0.11$ but then turns negative resulting in negative Nu which then again rises to Nu = 18 at $x^* = 0.13$ and then again falls. For $x^* > 0.12$, $T_b > T_w$.

Axial Variation of q_w - L20($\frac{6}{12}$)

From lecture 19, we know that the temperature response for **step-jump** in q_w at $x^* = x_0^*$ is given by

$$\Psi = \frac{T - T_i}{q_w b/k}$$

$$= \frac{3}{4} \left(y^{*^2} - \frac{y^{*^4}}{6} \right) + 4 x^* - \frac{39}{280}$$

$$+ \sum_{n=1}^{\infty} C_n Y_n (y^*) \exp\left(-\frac{8}{3} \lambda_n^2 x^*\right)$$

$$\Psi_w = \frac{17}{35} + 4 x^* + \sum_{n=1}^{\infty} B_n \exp\left(-\frac{8}{3} \lambda_n^2 x^*\right)$$

$$\frac{\partial \Psi}{\partial x^*} = 4 - \frac{8}{3} \sum_{n=1}^{\infty} B_n \lambda_n^2 \exp\left(-\frac{8}{3} \lambda_n^2 x^*\right)$$

where $B_n = C_n Y_n(1)$

3 > 4 3

Further Development - 1 - L20($\frac{7}{12}$)

· • *

Here, we consider only continuous variation of $q_w(x^*)$. Then, response of bulk and wall temperature will be

$$T_{w} - T_{i} = \frac{b}{k} \int_{0}^{x^{*}} \frac{\partial \Psi}{\partial x_{0}^{*}} q_{w} (x_{0}^{*}) dx_{0}^{*}$$

$$= \frac{b}{k} \int_{0}^{x^{*}} \left[4 - \frac{8}{3} \sum_{n=1}^{\infty} B_{n} \lambda_{n}^{2} \exp\left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \right] q_{w} (x_{0}^{*}) dx_{0}^{*}$$

$$T_{b} - T_{i} = \frac{4b}{k} \int_{0}^{x^{*}} q_{w} (x_{0}^{*}) dx_{0}^{*}$$

$$Nu_{x^{*}} = \frac{q_{w}(x^{*})}{T_{w} - T_{b}} \times \frac{4b}{k}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

A Problem - L20($\frac{8}{12}$)

In nuclear reactors, the fuel elements (rods or plates) generate sinusoidally varying heat flux along the cooling channels. Thus, let

$$\frac{q_w}{q_{w,max}} = \sin\left(\frac{\pi x}{L}\right)$$

where L is the length of the cooling channel. Then

$$\frac{T_b - T_i}{(q_{w,max} \ b/k)} = \int_0^{x^*} 4\sin\left(\frac{\pi \ x_0^*}{L^*}\right) \ dx_0^* \\ = \left(\frac{4 \ L^*}{\pi}\right) \left[1 - \cos\left(\frac{\pi \ x^*}{L^*}\right)\right]$$

Problem Contd. - 1 - L20($\frac{9}{12}$ **)**

$$\begin{aligned} \frac{T_w - T_i}{(q_{w,max} \ b/k)} &= \int_0^{x^*} 4\sin\left(\frac{\pi \ x_0^*}{L^*}\right) dx_0^* \\ &- \frac{8}{3} \int_0^{x^*} \sum_{n=1}^\infty B_n \ \lambda_n^2 \exp\left(-\frac{8}{3} \ \lambda_n^2 \ x^*\right) \sin\left(\frac{\pi \ x_0^*}{L^*}\right) dx_0^* \\ &= \left(\frac{4 \ L^*}{\pi}\right) \left[1 - \cos\left(\frac{\pi \ x^*}{L^*}\right)\right] \\ &+ \sum_{n=1}^\infty \left[\frac{B_n}{1 + \{(3 \ \pi)/(8 \ \lambda_n^2 \ L^*)\}^2}\right] \\ &\times \left[\sin\left(\frac{\pi \ x^*}{L^*}\right) \exp\left(-\frac{8}{3} \ \lambda_n^2 \ x^*\right) \\ &+ \frac{3 \ \pi}{8 \ L^*} \left\{\cos\left(\frac{\pi \ x^*}{L^*}\right) \exp\left(-\frac{8}{3} \ \lambda_n^2 \ x^*\right) - 1\right\}\right] \end{aligned}$$

Problem Contd. - 2 - L20 $(\frac{10}{12})$

From the results of last two slides

$$\begin{aligned} \frac{T_w - T_b}{(q_{w,max} \ b/k)} &= \sum_{n=1}^{\infty} \left[\frac{B_n}{1 + \{(3 \ \pi)/(8 \ \lambda_n^2 \ L^*)\}^2} \right] \\ &\times \left[\sin\left(\frac{\pi \ x^*}{L^*}\right) \exp\left(-\frac{8}{3} \ \lambda_n^2 \ x^*\right) \right. \\ &+ \left. \frac{3 \ \pi}{8 \ L^*} \left\{ \cos\left(\frac{\pi \ x^*}{L^*}\right) \exp\left(-\frac{8}{3} \ \lambda_n^2 \ x^*\right) - 1 \right\} \right] \\ Ν_x &= \left. \frac{4 \sin\left(\pi \ x^*/L^*\right)}{(T_w - T_b)/(q_{w,max} \ b/k)} \end{aligned}$$

Values of λ_n and B_n are given in lecture 19.

Results - L20($\frac{11}{12}$ **)**

$$egin{aligned} q_{w} &= q_{w,max} \sin\left(\pi \; x^{*}/L^{*}
ight) \ q_{w,max} &= 1 \end{aligned}$$

x/L	q_w	T _b	T_w	$\frac{Nu_x}{4}$
.01	.031	6e-3	.35	.09
.05	.156	.016	.525	.307
.10	.31	.062	.595	.580
.25	.707	.373	.908	1.32
.50	1.0	1.27	1.81	1.87
.70	.809	2.02	2.56	1.51
.80	.588	2.30	2.84	1.10
.90	.309	2.48	3.02	.577
.95	.156	2.53	3.06	.292
1.0	0.0	2.55	3.04	0.0

Note that $Nu_{x,max} = 7.48$ occurs at x/L = 0.5 where $q_{w,max}$ occurs, but $T_{w,max}$ and $T_{b,max}$ occur at x/L = 0.95. This problem is of relevance to Nuclear reactors.

Summary - L20(¹²/₁₂)

- We have considered fully developed heat transfer in circular tube and annuli and parallel plates.
- We have also presented a general method for flow and heat transfer in *singly connected* ducts of arbitrary cross-section and arbitrary variations of T_w , q_w and h_w
- Solutions for circular tube and parallel plates for $q_w(x) = \text{const}$ and $T_w(x) = \text{const}$ for the entire range of Prandtl numbers.
- Finally, we extrapolated these solutions to situations involving arbitrary axial variations of heat flux and wall temperature. However, for complex ducts, it is best to adopt CFD solutions
- This completes discussion on Laminar duct flow heat transfer.

< 回 > < 三 > < 三 >