ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date

Mechanical Engineering Department Indian Institute of Technology, Bombay

Mumbai - 400076
India

LECTURE-20 SUPERPOSITION TECHNIQUE

LECTURE-20 SUPERPOSITION TECHNIQUE

(1) Effect of Axially varying thermal boundary condition on developing heat transfer $\mathrm{Pr} \gg 1$
(2) Axial variation of T_{w}
(3) Axial variation of q_{w}

Axial Variation of $T_{w}-\mathrm{L} 20\left(\frac{1}{12}\right)$

Our thermal entry length solution for $\operatorname{Pr} \gg 1$ may be viewed as solution to a step-function ($T_{w}-T_{i}$) at $\mathrm{x}=x_{0}$. Thus, for $x \geq x_{0}$

$$
T-T_{i}=\left[1-\theta\left(x^{*}-x_{0}^{*}, y^{*}\right)\right]\left(T_{w}-T_{i}\right) \rightarrow \theta=\frac{T-T_{w}}{T_{i}-T_{w}}
$$

Therefore, for arbitrary variation of T_{w}, we have

$$
\begin{aligned}
T-T_{i} & =\int_{0}^{x^{*}}\left[1-\theta\left(x^{*}-x_{0}^{*}, y^{*}\right)\right] \frac{d T_{w}}{d x_{0}^{*}} d x_{0}^{*} \\
& +\sum_{k=1}^{N K}\left[1-\theta\left(x^{*}-x_{0, k}^{*}, y^{*}\right)\right] \Delta\left(T_{w}-T_{i}\right)_{k}
\end{aligned}
$$

Further Development - 1 - L20($\frac{2}{12}$)

Therefore, the wall heat flux is evaluated as

$$
\begin{aligned}
q_{w}\left(x^{*}\right) & =\left.k \frac{\partial T}{\partial y}\right|_{y=b}=\left.\frac{k}{b} \frac{\partial T}{\partial y^{*}}\right|_{y^{*}=1} \\
& =-\frac{k}{b}\left[\int_{0}^{x^{*}} \theta^{\prime}\left(x^{*}-x_{0}^{*}, 1\right) \frac{d T_{w}}{d x_{0}^{*}} d x_{0}^{*}\right. \\
& \left.+\sum_{k=1}^{N K} \theta^{\prime}\left(x^{*}-x_{0, k}^{*}, 1\right) \Delta\left(T_{w}-T_{i}\right)_{k}\right]
\end{aligned}
$$

But, we know that (see lecture 19)

$$
\theta^{\prime}(1)=-\sum_{n=0}^{\infty} A_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \rightarrow A_{n}=-C_{n} Y_{n}^{\prime}(1)
$$

Further Development - 2-L20($\left.\frac{3}{12}\right)$

Therefore, substitution gives

$$
\begin{aligned}
q_{w}\left(x^{*}\right) & =\frac{k}{b}\left[\int_{0}^{x^{*}} \sum_{n=0}^{\infty} A_{n} \exp \left\{-\frac{8}{3} \lambda_{n}^{2}\left(x^{*}-x_{0}^{*}\right)\right\} \frac{d T_{w}}{d x_{0}^{*}} d x_{0}^{*}\right. \\
& \left.+\sum_{k=1}^{N K} \sum_{n=0}^{\infty} A_{n} \exp \left\{-\frac{8}{3} \lambda_{n}^{2}\left(x^{*}-x_{0, k}^{*}\right)\right\} \Delta\left(T_{w}-T_{i}\right)_{k}\right] \\
T_{b}-T_{i} & =\frac{4 b}{k} \int_{0}^{x^{*}} q_{w}\left(x^{*}\right) d x^{*} \\
N u_{x^{*}} & =\frac{h_{x}(4 b)}{k}=\frac{q_{w}\left(x^{*}\right)}{\left(T_{w}-T_{b}\right)_{x^{*}}} \times \frac{4 b}{k}
\end{aligned}
$$

A Problem - L20($\left.\frac{4}{12}\right)$
Let $T_{w}-T_{i}=\left(A+B x^{*}\right) \rightarrow d T_{w} / d x_{0}^{*}=B$. Then

$$
\begin{aligned}
q_{w}\left(x^{*}\right) & =\frac{k}{b}\left[\frac{3 B}{8} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{2}}\left\{1-\exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right\}\right. \\
& \left.+A \sum_{n=0}^{\infty} A_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right] \quad\left(\text { note } x_{0}=0\right) \\
T_{w}-T_{b} & =\frac{9 B}{16} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{4}}\left\{1-\exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right\} \\
& +\frac{3 A}{2} \sum_{n=0}^{\infty} A_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
N u_{x^{*}} & =\frac{q_{w} 4 b}{k\left(T_{w}-T_{b}\right)} \text { as } x \rightarrow \infty, N u_{x}=\frac{8 \sum_{0}^{\infty} A_{n} / \lambda_{n}^{2}}{3 \sum_{0}^{\infty} A_{n} / \lambda_{n}^{4}}=8.235
\end{aligned}
$$

Results for $\mathrm{A}=1$ and $\mathrm{B}=-5-\mathrm{L} 20\left(\frac{5}{12}\right)$

x^{*}	T_{w}	T_{b}	q_{w}	$N u_{x}$
0	1.0	0	8.7	35
.05	.75	.32	.73	6.8
.10	.50	.39	.1	3.7
.11	.45	.4	0	.04
.1	.40	.4	-1	-66
.15	.25	.37	-0.32	12.5
.17	.15	.34	-0.45	9.7
.19	.05	.30	.- .56	9.2
.20	0	.27	.62	9.1

Strange things happen. T_{w} reduces to $T_{i}=0$ at $x^{*}=0.2$. T_{b} increases from 0 till $x^{*}=0.11$ but then falls. $q_{w}>0$ for $x^{*} \leq 0.11$ but then turns negative resulting in negative Nu which then again rises to $\mathrm{Nu}=18$ at $x^{*}=0.13$ and then again falls. For $x^{*}>0.12, T_{b}>T_{w}$.

Axial Variation of $q_{w}-\operatorname{L20}\left(\frac{6}{12}\right)$

From lecture 19, we know that the temperature response for step-jump in q_{w} at $x^{*}=x_{0}^{*}$ is given by

$$
\begin{aligned}
\Psi & =\frac{T-T_{i}}{q_{w} b / k} \\
& =\frac{3}{4}\left(y^{*^{2}}-\frac{y^{*^{4}}}{6}\right)+4 x^{*}-\frac{39}{280} \\
& +\sum_{n=1}^{\infty} C_{n} Y_{n}\left(y^{*}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
\Psi_{w} & =\frac{17}{35}+4 x^{*}+\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
\frac{\partial \Psi}{\partial x^{*}} & =4-\frac{8}{3} \sum_{n=1}^{\infty} B_{n} \lambda_{n}^{2} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)
\end{aligned}
$$

where $B_{n}=C_{n} Y_{n}(1)$

Further Development - 1-L20($\left.\frac{7}{12}\right)$

Here, we consider only continuous variation of $q_{w}\left(x^{*}\right)$. Then, response of bulk and wall temperature will be

$$
\begin{aligned}
T_{w}-T_{i} & =\frac{b}{k} \int_{0}^{x^{*}} \frac{\partial \Psi}{\partial x_{0}^{*}} q_{w}\left(x_{0}^{*}\right) d x_{0}^{*} \\
& =\frac{b}{k} \int_{0}^{x^{*}}\left[4-\frac{8}{3} \sum_{n=1}^{\infty} B_{n} \lambda_{n}^{2} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right] q_{w}\left(x_{0}^{*}\right) d x_{0}^{*} \\
T_{b}-T_{i} & =\frac{4 b}{k} \int_{0}^{x^{*}} q_{w}\left(x_{0}^{*}\right) d x_{0}^{*} \\
N u_{x^{*}} & =\frac{q_{w}\left(x^{*}\right)}{T_{w}-T_{b}} \times \frac{4 b}{k}
\end{aligned}
$$

A Problem - L20 $\left(\frac{8}{12}\right)$

In nuclear reactors, the fuel elements (rods or plates) generate sinusoidally varying heat flux along the cooling channels. Thus, let

$$
\frac{q_{w}}{q_{w, \max }}=\sin \left(\frac{\pi x}{L}\right)
$$

where L is the length of the cooling channel. Then

$$
\begin{aligned}
\frac{T_{b}-T_{i}}{\left(q_{w, \max } b / k\right)} & =\int_{0}^{x^{*}} 4 \sin \left(\frac{\pi x_{0}^{*}}{L^{*}}\right) d x_{0}^{*} \\
& =\left(\frac{4 L^{*}}{\pi}\right)\left[1-\cos \left(\frac{\pi x^{*}}{L^{*}}\right)\right]
\end{aligned}
$$

Problem Contd. - 1-L20($\left(\frac{9}{12}\right)$

$$
\begin{aligned}
\frac{T_{w}-T_{i}}{\left(q_{w, \text { max }} b / k\right)} & =\int_{0}^{x^{*}} 4 \sin \left(\frac{\pi x_{0}^{*}}{L^{*}}\right) d x_{0}^{*} \\
& -\frac{8}{3} \int_{0}^{x^{*}} \sum_{n=1}^{\infty} B_{n} \lambda_{n}^{2} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \sin \left(\frac{\pi x_{0}^{*}}{L^{*}}\right) d x_{0}^{*} \\
& =\left(\frac{4 L^{*}}{\pi}\right)\left[1-\cos \left(\frac{\pi x^{*}}{L^{*}}\right)\right] \\
& +\sum_{n=1}^{\infty}\left[\frac{B_{n}}{1+\left\{(3 \pi) /\left(8 \lambda_{n}^{2} L^{*}\right)\right\}^{2}}\right] \\
& \times\left[\sin \left(\frac{\pi x^{*}}{L^{*}}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right. \\
& \left.+\frac{3 \pi}{8 L^{*}}\left\{\cos \left(\frac{\pi x^{*}}{L^{*}}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)-1\right\}\right]
\end{aligned}
$$

Problem Contd. -2-L20($\left.\frac{10}{12}\right)$

From the results of last two slides

$$
\begin{aligned}
\frac{T_{w}-T_{b}}{\left(q_{w, \max } b / k\right)} & =\sum_{n=1}^{\infty}\left[\frac{B_{n}}{1+\left\{(3 \pi) /\left(8 \lambda_{n}^{2} L^{*}\right)\right\}^{2}}\right] \\
& \times\left[\sin \left(\frac{\pi x^{*}}{L^{*}}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right. \\
& \left.+\frac{3 \pi}{8 L^{*}}\left\{\cos \left(\frac{\pi x^{*}}{L^{*}}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)-1\right\}\right] \\
N u_{x} & =\frac{4 \sin \left(\pi x^{*} / L^{*}\right)}{\left(T_{w}-T_{b}\right) /\left(q_{w, \max } b / k\right)}
\end{aligned}
$$

Values of λ_{n} and B_{n} are given in lecture 19.

Results - L20($\frac{11}{12}$)

$q_{w}=q_{w, \max } \sin \left(\pi x^{*} / L^{*}\right)$
$q_{w, \text { max }}=1$

x / L	q_{w}	T_{b}	T_{w}	$\frac{N u_{x}}{4}$
.01	.031	$6 \mathrm{e}-3$.35	.09
.05	.156	.016	.525	.307
.10	.31	.062	.595	.580
.25	.707	.373	.908	1.32
.50	1.0	1.27	1.81	1.87
.70	.809	2.02	2.56	1.51
.80	.588	2.30	2.84	1.10
.90	.309	2.48	3.02	.577
.95	.156	2.53	3.06	.292
1.0	0.0	2.55	3.04	0.0

$q_{w}=q_{w, \max } \sin \left(\pi x^{*} / L^{*}\right)$
$q_{w, \max }=1$

Note that $N u_{x, \max }=7.48$ occurs at $x / L=0.5$ where $q_{w, \text { max }}$ occurs, but $T_{w, \max }$ and $T_{b, \max }$ occur at $x / L=0.95$. This problem is of relevance to Nuclear reactors.

Summary - L20($\frac{12}{12}$)

(1) We have considered fully developed heat transfer in circular tube and annuli and parallel plates.
(2) We have also presented a general method for flow and heat transfer in singly connected ducts of arbitrary cross-section and arbitrary variations of T_{w}, q_{w} and h_{w}
(3) We presented developing heat transfer solutions for circular tube and parallel plates for $q_{w}(x)=$ const and $T_{w}(x)=$ const for the entire range of Prandtl numbers.
(9) Finally, we extrapolated these solutions to situations involving arbitrary axial variations of heat flux and wall temperature. However, for complex ducts, it is best to adopt CFD solutions
(3) This completes discussion on Laminar duct flow heat transfer.

