ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-19 LAMINAR DEVELOPING HEAT TRANSFER IN DUCTS

LECTURE-19 LAMINAR DEVELOPING HEAT TRANSFER

(1) Importance of Prandtl Number
(2) Simultaneous Development of Flow and Heat Transfer for $\operatorname{Pr} \simeq 1$
(3) Fully Developed Flow - Thermal Entry Length for $\operatorname{Pr} \gg 1$
(a) Slug Flow - Thermal Entry Length for $\operatorname{Pr} \ll 1$

Importance of Pr-L19($\left.\frac{1}{20}\right)$

(1) In the entrance length of a duct, the velocity and temperature boundary layers develop simultaneously in the presence of heat transfer.
(2) For $\operatorname{Pr} \simeq 1$ the two layers can be expected to develop at almost the same rate.
(3) However, for $\operatorname{Pr} \gg 1$ (Oils) , the temperature boundary layers will develop at a very slow rate, so much so that the velocity profile will already be fully-developed over greater part of thermal development.
(3) Conversely, for $\operatorname{Pr} \ll 1$ (Liquid Metals), the temperature boundary layer will develop so rapidly that the velocity profile may be assumed to be almost uniform $=\bar{u}$.

Simultaneous Development - L19 $\left(\frac{2}{20}\right)$

Consider entry region of flow between parallel plates 2 b apart. Then, the governing equations are

$$
\begin{aligned}
& \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0 \\
& \frac{\partial\left(u^{*} u^{*}\right)}{\partial x^{*}}+\frac{\partial\left(u^{*} v^{*}\right)}{\partial y^{*}}=-\frac{d p^{*}}{d x^{*}}+\frac{1}{\operatorname{Re}}\left[\frac{\partial^{2} u^{*}}{\partial y^{*}}\right] \\
& \frac{\partial\left(u^{*} T\right)}{\partial x^{*}}+\frac{\partial\left(v^{*} T\right)}{\partial y^{*}}=\frac{1}{\operatorname{RePr}}\left[\frac{\partial^{2} T}{\partial y^{*^{2}}}+\frac{\partial^{2} T}{\partial x^{*^{2}}}\right] \\
& \text { where } u^{*}=\frac{u}{\bar{u}}, v^{*}=\frac{v}{\bar{u}}, p^{*}=\frac{p}{\rho \bar{u}^{2}} x^{*}=\frac{x}{D_{h}}, y^{*}=\frac{y}{D_{h}} \\
& \operatorname{Re}=\frac{\bar{u} D_{h}}{\nu} \quad D_{h}=4 b \\
& \text { For } \operatorname{RePr} \geq 100 \quad \frac{\partial^{2} T}{\partial x^{*^{2}}} \ll \frac{\partial^{2} T}{\partial y^{*^{2}}}
\end{aligned}
$$

Velocity Solution - L19 ($\frac{3}{20}$)

From Lecture 14,

$$
\begin{aligned}
u^{\prime} & =u^{*}+\frac{R e}{\beta^{2}} \frac{d p^{*}}{d x^{*}} \\
& ==C_{1} \exp \left(\beta y^{*}\right)+C_{2} \exp \left(-\beta y^{*}\right) \\
C_{1} & =\frac{\left(R e / \beta^{2}\right)\left(d p^{*} / d x^{*}\right)}{1+\exp (\beta / 2)} \\
C_{2} & =C_{1} \exp (\beta / 2) \\
v^{*} & =-\frac{d}{d x^{*}}\left[\int_{0}^{y^{*}} u^{*} d y^{*}\right]
\end{aligned}
$$

Therefore, the temperature Eqn can be solved by method of linearisation. The method is very cumbersome ${ }^{1}$. Hence only solutions are given.
${ }^{1}$ Heaton H S, Reynolds W C and Kays W M, Int Jnl H \& M Transfer, vol 7, p 763, (1964)

Parallel Plates $-q_{\text {top }}=$ const - $-\operatorname{L19}\left(\frac{4}{20}\right)$

Top wall receives axially uniform heat flux q_{h}. Bottom wall is insulated. $x^{+}=x^{*} /(\operatorname{RePr}), \theta=\left(T-T_{i}\right) /\left(q_{h} D_{h} / k\right), \theta_{b}=2 x^{+}$,
$N u_{h}=h_{h, x} D_{h} / k=1 . / \Delta \theta \rightarrow \Delta \theta=\left(\theta_{w}-\theta_{b}\right)$
parallel plates

Pr	x^{+}	.001	.0025	.005	.01	.05	.10	∞
	$N u_{h}$	15.56	11.46	9.2	7.49	5.55	5.4	5.39
10	$\Delta \theta_{h}$.064	.087	.11	.134	.18	.185	.186
	$\Delta \theta_{\text {uh }}$	-.002	-.005	-.01	-.02	-.059	-.064	-.0643
	$N u_{h}$	18.5	12.6	9.62	7.68	5.55	5.4	5.39
.7	$\Delta \theta_{h}$.054	.079	.104	.13	.18	.185	.186
	$\Delta \theta_{u h}$	-.002	-.005	-.01	-.02	-.059	-.064	-.0643
	$N u_{h}$	24.2	15.8	11.7	8.80	5.77	5.53	5.39
.01	$\Delta \theta_{h}$.041	.063	.086	.114	.173	.181	.186
	$\Delta \theta_{\text {uh }}$	-.002	-.005	-.01	-.02	-.066	-.068	-.064
	θ_{b}	.002	.005	.01	.02	.10	.2	∞

Circular Tube $-q_{w}=$ const $-\operatorname{L19}\left(\frac{5}{20}\right)$

 u^{*} and v^{*} from Langhaar Soln - Uniform heat flux $q_{w}-\theta_{b}=4 x^{+}$, $N u_{x}=h_{x} D_{h} / k=1 . / \Delta \theta \rightarrow \Delta \theta=\left(\theta_{w}-\theta_{b}\right)$| Circular Tube | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | x^{+} | .001 | .0025 | .005 | .01 | .05 | .10 | ∞ |
| | $N u_{x}$ | 14.34 | 9.93 | 7.87 | 6.32 | 4.51 | 4.38 | 4.36 |
| 10 | $\Delta \theta$ | .0697 | .1007 | .1271 | .1582 | .222 | .228 | .229 |
| | $N u_{x}$ | 17.84 | 12.08 | 9.12 | 7.14 | 4.72 | 4.41 | 4.36 |
| .7 | $\Delta \theta$ | .0561 | .0828 | .1096 | .1401 | .212 | .227 | .229 |
| | $N u_{x}$ | 24.2 | 16. | 12. | 9.1 | 6.08 | 5.73 | 4.36 |
| .01 | $\Delta \theta$ | .0413 | .0625 | .0833 | .11 | .165 | .175 | .229 |
| | θ_{b} | .004 | .010 | .020 | .040 | .20 | .4 | ∞ |

For both parallel plates (pp) and circular tube (ct), thermal development length is $L_{h} / D_{h} \simeq 0.1 \times$ Re Pr. This is typical for ducts of nearly all cross-sections. Recall that $L_{\text {flow }} /\left.D_{h}\right|_{p p} \simeq 0.01 \times R e$ and $L_{\text {flow }} /\left.D_{h}\right|_{c t} \simeq 0.05 \times R e$.

Parallel Plates ($T_{w}=$ const $)$ - L19 $\left(\frac{6}{20}\right)$

Here, both plates are held at constant temperature.

$\operatorname{Pr}=5.0$				$\operatorname{Pr}=2.5$			$\operatorname{Pr}=0.7$		
x^{+}	$N u_{x}$	θ_{b}	x^{+}	$N u_{x}$	θ_{b}	x^{+}	$N u_{x}$	θ_{b}	
$1 \mathrm{e}-4$	40.9	.946	$1 \mathrm{e}-4$	56.1	.952	$3.6 \mathrm{e}-4$	38.9	.897	
$3 \mathrm{e}-4$	22.1	.925	$2 \mathrm{e}-4$	30.9	.918	$7.1 \mathrm{e}-4$	18.4	.840	
$7 \mathrm{e}-4$	15.2	.905	$6 \mathrm{e}-4$	16.8	.888	$2.1 \mathrm{e}-3$	11.3	.776	
.0012	12.2	.88	.0014	12.1	.857	$5 \mathrm{e}-3$	9.05	.705	
.003	9.4	.813	.004	8.95	.771	$8.6 \mathrm{e}-3$	8.17	.616	
.0065	8.2	.715	.006	8.29	.714	.0143	7.79	.516	
.009	7.9	.658	.009	7.91	.643	.0321	7.59	.295	
.012	7.7	.594	.013	7.71	.565	.0643	7.57	.125	
.027	7.6	.374	.024	7.59	.399	.086	7.57	.071	
∞	7.54	0.0	∞	7.54	0.0	∞	7.54	0.0	

Circular Tube ($T_{w}=$ const $)-\operatorname{L19}\left(\frac{7}{20}\right)$

	$P r=0.7$		$P r=2.0$		$P r=5.0$	
x^{+}	$N u_{x}$	$N u_{m}$	$N u_{x}$	$N u_{m}$	$N u_{x}$	$N u_{m}$
.001	16.8	30.6	14.8	25.2	13.5	22.1
.002	12.6	22.1	11.4	19.1	10.6	16.8
.004	9.6	16.7	8.8	14.4	8.2	12.9
.006	8.25	14.1	7.5	12.4	7.1	11.0
.01	6.8	11.3	6.2	10.2	5.9	9.2
.02	5.3	8.7	5.0	7.8	4.7	7.1
.05	4.2	6.1	4.1	5.6	3.9	5.1
∞	3.66	3.66	3.66	3.66	3.66	3.66

$N u_{m}=\frac{1}{x} \int_{0}^{x} N u_{x} d x$

Thermal Entry Length - L19 $\left(\frac{8}{20}\right)$

For $\operatorname{Pr} \gg 1$, over greater part of thermal development, the velocity profile can assumed to be fully developed. Hence, For Parallel Plates

$$
\begin{aligned}
u_{f d} \frac{\partial T}{\partial x} & =\alpha \frac{\partial^{2} T}{\partial y^{2}} \\
\frac{u_{f d}}{\bar{u}} & =\frac{3}{2}\left\{1-\left(\frac{y}{b}\right)^{2}\right\}
\end{aligned}
$$

For Circular Tube

$$
\begin{aligned}
u_{f d} \frac{\partial T}{\partial x} & =\frac{\alpha}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) \\
\frac{u_{f d}}{\bar{u}} & =2\left\{1-\left(\frac{r}{R}\right)^{2}\right\}
\end{aligned}
$$

BCs at $\mathrm{y}, \mathrm{r}=0$ (symmetry) and $\mathrm{y}=\mathrm{b}$ and $\mathrm{r}=\mathrm{R}$ (wall) must be given. Initial condition: $\mathrm{T}=T_{i}$ at $\mathrm{x}=0$.

Parallel Plates $-T_{w}=$ const - L19 $\left(\frac{9}{20}\right)$

Governing Eqn

$$
\begin{aligned}
\frac{3}{8}\left(1-y^{*^{2}}\right) \frac{\partial \theta}{\partial x^{*}} & =\frac{\partial^{2} \theta}{\partial y^{*^{2}}} \\
\theta=\frac{T-T_{w}}{T_{i}-T_{w}} & , \quad x^{*}=\frac{(x / b)}{R e P r}, \quad y^{*}=\frac{y}{b} \\
\text { BC } \theta\left(x^{*}, 1\right) & =0,\left.\quad \frac{\partial \theta}{\partial y^{*}}\right|_{x^{*}, 0}=0 \\
\text { IC } \theta\left(0, y^{*}\right) & =1.0
\end{aligned}
$$

This is known as the Graetz Problem. It is solved by the Method of separation of variables.

Soln - $1-T_{w}=$ const $-\operatorname{L19}\left(\frac{10}{20}\right)$

Let $\theta=X\left(x^{*}\right) \times Y\left(y^{*}\right)$. Then, substitution gives two ODEs

$$
\begin{array}{rlrl}
X^{\prime}+\frac{8}{3} \lambda^{2} X & =0 \text { with } & X(0)=1 \\
Y^{\prime \prime}+\lambda^{2}\left(1-y^{*^{2}}\right) Y & =0 \text { with } & Y(1) & =Y^{\prime}(0)=0
\end{array}
$$

The soln for this Sturm-Louville Eqn-set is

$$
\begin{aligned}
\theta\left(x^{*}, y^{*}\right) & =\sum_{n=0}^{\infty} C_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \times Y_{n}\left(y^{*}\right) \\
C_{n} & =\frac{\int_{0}^{1}\left(1-y^{*^{2}}\right) Y_{n} d y^{*}}{\int_{0}^{1}\left(1-y^{*^{2}}\right) Y_{n}^{2} d y^{*}}=\frac{-2 / \lambda_{n}}{\left(d Y_{n} / d \lambda_{n}\right)_{y^{*}=1}}
\end{aligned}
$$

λ_{n} are obtained by integrating Y-Eqn by shooting method for various values of λ. Correct values of λ_{n} correspond to $Y(1)=0$.

Soln - 2- $T_{w}=$ const - L19 $\left(\frac{11}{20}\right)$

$$
\begin{aligned}
N u_{x} & =\frac{h(4 b)}{k}=-4\left(\frac{\theta^{\prime}(1)}{\theta_{b}}\right) \\
\theta_{b} & =\frac{3}{2} \int_{0}^{1} \theta\left(1-y^{*^{2}}\right) d y^{*} \\
& =\frac{3}{2} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{2}} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
\theta^{\prime}(1) & =-\sum_{n=0}^{\infty} A_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \rightarrow A_{n}=-C_{n} Y_{n}^{\prime}(1) \\
N u_{x} & =\frac{8}{3}\left[\frac{\sum_{n=0}^{\infty} A_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)}{\sum_{n=0}^{\infty}\left(A_{n} / \lambda_{n}^{2}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)}\right] \\
N u_{m} & =\frac{1}{x^{*}} \int_{0}^{x^{*}} N u_{x} d x^{*}=-\frac{\ln \theta_{b}}{x^{*}}
\end{aligned}
$$

Soln - $3-T_{w}=$ const - L19 $\left(\frac{12}{20}\right)$

Eigen Values and Constants

n	λ_{n}	$C_{n} / 2$	$A_{n} / 2$
0	1.6816	0.6002	0.85808
1	5.6696	-0.1503	0.56946
2	9.6682	0.08041	0.47606
3	13.6677	-0.05161	0.42397
4	17.6674	0.03982	0.3891
$n>4$	$4 \mathrm{n}+5 / 3$	$(-1)^{n} 1.1356 \lambda_{n}$	$1.0128 \lambda_{n}^{-1 / 3}$

These values also apply to circular tube ${ }^{2}$
${ }^{2}$ Brown G. M. AIChE,vol 6, p 179-183, (1960)

Soln - 4- $T_{w}=$ const $-\operatorname{L19}\left(\frac{13}{20}\right)$

$x^{*} / 4$	θ_{b}	$N u_{x}$	$N u_{m}$
0	1.0	∞	∞
0.0001	0.9842	26.56	39.736
0.0005	0.95425	15.83	23.416
0.001	0.92774	12.822	18.752
0.003	0.85137	9.5132	13.409
0.005	0.79258	8.5166	11.623
0.01	0.67503	7.7405	9.8249
0.02	0.49804	7.5495	8.7133
0.05	0.20148	7.5407	8.0103
0.10	0.04459	7.5407	7.7755
0.20	0.00218	7.5407	7.6581
∞	0.0	7.5407	7.5407

$N u_{f d}=(8 / 3) \times \lambda_{0}^{2}=7.5407$

Parallel Plates $-q_{w}=$ const - L19 $\left(\frac{14}{20}\right)$

In this case, we define

$$
\begin{aligned}
\Psi(x, y) & =\frac{T(x, y)-T_{f d}(x, y)}{q_{w} b / k}+\frac{T_{f d}(x, y)-T_{i}}{q_{w} b / k} \\
& =\theta(x, y)+\theta_{f d}(x, y) \\
\frac{d \theta_{f d}}{d x^{*}} & =4 \rightarrow x^{*}=\frac{(x / b)}{\operatorname{RePr}}
\end{aligned}
$$

Then, we have two equations.

$$
\begin{aligned}
\frac{3}{2}\left(1-y^{*^{2}}\right) & =\frac{\partial^{2} \theta_{f d}}{\partial y^{*^{2}}} \\
\frac{3}{8}\left(1-y^{*^{2}}\right) \frac{\partial \theta}{\partial x^{*}} & =\frac{\partial^{2} \theta}{\partial y^{*^{2}}}
\end{aligned}
$$

Soln - $1-q_{w}=$ const $-\operatorname{L19}\left(\frac{15}{20}\right)$

Fully Developed part - Integration gives

$$
\theta_{f d}=\frac{3}{4}\left(y^{*^{2}}-\frac{y^{*^{4}}}{6}\right)+4 x^{*}-\frac{39}{280}
$$

Developing part -

$$
\begin{aligned}
\theta & =\sum_{n=1}^{\infty} C_{n} Y_{n}\left(y^{*}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
C_{n} & =-\frac{\int_{0}^{1} \theta_{f d,\left(x^{*}=0\right)}\left(1-y^{*^{2}}\right) Y_{n}\left(y^{*}\right) d y^{*}}{\int_{0}^{1}\left(1-y^{*^{2}}\right) Y_{n}^{2}\left(y^{*}\right) d y^{*}}
\end{aligned}
$$

Soln - $2-q_{w}=$ const -L19 $\left(\frac{16}{20}\right)$

Complete solution

$$
\begin{aligned}
\psi & =\frac{3}{4}\left(y^{*^{2}}-\frac{y^{*^{4}}}{6}\right)+4 x^{*}-\frac{39}{280} \\
& +\sum_{n=1}^{\infty} C_{n} Y_{n}\left(y^{*}\right) \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
\Psi_{w} & =\frac{17}{35}+4 x^{*}+\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right) \\
\Psi_{b} & =4 x^{*} \quad \rightarrow B_{n}=C_{n} Y_{n}(1) \\
N u_{x} & =\frac{h D_{h}}{k}=\left(\frac{q_{w}}{T_{w}-T_{b}}\right)\left(\frac{4 b}{k}\right)=\frac{4}{\Psi_{w}-\Psi_{b}} \\
\frac{1}{N u_{x}} & =\frac{1}{4}\left[\frac{17}{35}+\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{8}{3} \lambda_{n}^{2} x^{*}\right)\right]
\end{aligned}
$$

Soln - $3-q_{w}=$ const $-\operatorname{L19}\left(\frac{17}{20}\right)$

Eigen values			Nu values		
n	λ_{n}	$-B_{n}$	$x^{*} / 4$	$N u_{x}$	$N u_{m}$
1	4.2872	0.2222	0.0001	32.153	48_{11}
2	8.3037	0.07253	0.0005	19.113	28.33
3	12.3106	0.00737	0.001	15.427	22.65
4	16.3145	0.02328	0.005	9.9878	13.89
5	20.3171	0.01611	0.01	8.8031	11.58
6	24.319	0.01192	0.03	8.2458	9.446
7	28.3203	0.00923	0.05	8.2355	8.963
8	32.3214	0.0074	0.10	8.2353	8.599
9	36.3223	0.00609	0.20	8.2353	8.417
10	40.3231	0.00511	∞	8.2353	8.2353

For $n>10, \lambda_{n}=4 n+1 / 3$ and $-B_{n}=2.401006 \lambda_{n}^{-5 / 3}$

Thermal Entry Length - L19 $\left(\frac{18}{20}\right)$

For $\operatorname{Pr} \ll 1$, over greater part of thermal development, the velocity profile hardly changes. Hence, For Parallel Plates the governing equation is

$$
\bar{u} \frac{\partial T}{\partial x}=\alpha \frac{\partial^{2} T}{\partial y^{2}}
$$

or

$$
\frac{1}{4} \frac{\partial \theta}{\partial x^{*}}=\frac{\partial^{2} \theta}{\partial y^{*^{2}}} \rightarrow \theta=\frac{T-T_{i}}{T_{w}-T_{i}} \rightarrow x^{*}=\frac{(x / b)}{\operatorname{Re} \operatorname{Pr}}
$$

where it is assumed that $\operatorname{RePr}>100$. Then, this parabolic equation can be solved by method of separation of variables using the appropriate boundary conditions.

Parallel Plates - $\operatorname{Pr} \ll 1$ - L19 $\left(\frac{19}{20}\right)$

For $T_{w}=$ const , the soln is

$$
\begin{aligned}
\theta & =\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \cos \left\{\frac{(2 n+1) \pi y^{*}}{2}\right\} \\
& \times \exp \left(-\pi^{2}(2 n+1)^{2} x^{*}\right) \\
\theta_{b} & =\int_{0}^{1} \theta d y^{*}=\frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\exp \left(-\pi^{2}(2 n+1)^{2} x^{*}\right)}{(2 n+1)^{2}} \\
\left.\frac{\partial \theta}{\partial y^{*}}\right|_{y^{*}=1} & =-2 \sum_{n=0}^{\infty} \exp \left(-\pi^{2}(2 n+1)^{2} x^{*}\right) \\
N u_{x} & =-4\left(\left.\frac{\partial \theta}{\partial y^{*}}\right|_{y^{*}=1}\right) \times \theta_{b}^{-1}
\end{aligned}
$$

For large $x^{*} \quad N u_{f d} \rightarrow \pi^{2}=9.87>7.545($ for $\operatorname{Pr} \gg 1$)

Parallel Plates - $\operatorname{Pr} \ll 1$ - L19 $\left(\frac{20}{20}\right)$

For $q_{w}=$ const , the soln is

$$
\begin{aligned}
\Psi & =\theta+\theta_{f d} \\
& =-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos \left(n \pi y^{*}\right) \exp \left(-4 \pi^{2} n^{2} x^{*}\right) \\
& +\frac{y^{*^{2}}}{2}+4 x^{*}-\frac{1}{6} \\
\Psi_{w} & =-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left(-4 \pi^{2} n^{2} x^{*}\right)+4 x^{*}+\frac{1}{3} \\
\Psi_{b} & =4 x^{*} \\
N u_{x} & =12\left\{1-\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left(-4 \pi^{2} n^{2} x^{*}\right)\right\}^{-1}
\end{aligned}
$$

For large $x^{*} \quad N u_{f d} \rightarrow 12>8.235($ for $\operatorname{Pr} \ggg 1)$

