ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-17 FULLY-DEVELOPED LAMINAR FLOW HEAT TRANSFER-1

LECTURE-17 FULLY-DEVELOPED LAMINAR FLOW HEAT TRANSFER-1

- Definition of Fully Developed Heat Transfer
- Nusselt number Circular Tube family
 - O Circular Tube Const Wall Heat Flux
 - Annulus Const Wall Heat Flux
 - Oircular Tube Const Wall Temperature
 - Oircular Tube Const Wall Heat Flux with Viscous Heating
 - S Circular Tube Circumferential Heat Flux Variation.

The figure shows axial variations of wall temperature T_w , fluid-bulk temperature T_b and heat transfer coefficient h in a duct following entry of uniform temperature fluid. Fully developed heat transfer is identified with constancy of h with axial distance

3 > 4 3

A D b 4 B b 4

FD Heat Tr - Definition - 2 - L17($\frac{2}{19}$)

We define

$$\Phi(x, r) = \frac{T_w(x) - T(x, r)}{T_w(x) - T_b(x)} \text{ where}$$
$$T_b = \frac{\int_A \rho c_p u T dA}{\int_A \rho c_p u dA}$$

In Fully-developed heat transfer $\partial \Phi / \partial x = 0$ or, Φ is constant with x. Therefore,

$$\frac{\partial \Phi}{\partial r}|_{r=R} = -\frac{(\partial T/\partial r)_{r=R}}{T_w(x) - T_b(x)} = \frac{q_w(x)/k}{T_w(x) - T_b(x)} = \frac{h}{k} = \text{constant}$$

In developing heat transfer, however, $\partial \Phi / \partial x = f(x, r)$.

Circular Tube - q_w = const - L17($\frac{3}{19}$)

In fully developed flow and heat transfer, the governing equation will read as

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = \frac{u}{\alpha}\frac{\partial T}{\partial x} = \frac{u_{fd}}{\alpha}\frac{dT}{dx}, \quad u_{fd} = 2\overline{u}\left(1 - \frac{r^2}{R^2}\right)$$

But $\frac{dT}{dx} = \frac{dT_w}{dx} = \frac{dT_b}{dx} = \frac{q_w}{\rho}\frac{2\pi R}{c_p\overline{u}\pi R^2} = \text{const}$
or $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = 4\left(1 - \frac{r^2}{R^2}\right)\frac{q_w}{kR}$ (a1)

with boundary conditions $T = T_w$ at r = R and $\partial T/\partial r = 0$ at r = 0. Therefore, integrating Equation (a1) twice and using BCs to determine integration constants, we have (next slide)

くロン くぼう くほう くほう 二日

Circular Tube - $q_w = \text{const} - \text{L17}(\frac{4}{19})$

$$T = (T_w - \frac{3}{4} \frac{q_w}{kR}) + \frac{q_w}{kR} (r^2 - \frac{r^4}{4R^4}) \text{ Hence,}$$

$$T_b = \frac{\int_A \rho c_p u T dA}{\int_A \rho c_p u dA} = \frac{\int_0^R u T r dr}{\int_0^R u r dr} = T_w - \frac{11}{24} (\frac{q_w}{kR})$$

$$Nu_D = \frac{h D}{k} = (\frac{2 R}{k}) \frac{q_w}{T_w - T_b} = \frac{48}{11} = 4.3636$$

Similar analysis for FD flow and heat transfer between two parallel plates separated by distance 2b between the plates gives

$$Nu_{D_h} = \frac{h\,4b}{k} = 8.235$$

Annulus - L17 $(\frac{5}{19})$ The governing equation will read as

$$\frac{u}{\alpha} \frac{\partial T}{\partial x} = \frac{u_{fd}}{\alpha} \frac{dT}{dx} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

$$\frac{u_{fd}}{\overline{u}} = \frac{2}{M} \left[1 - \left(\frac{r}{r_o} \right)^2 + B \ln \left(\frac{r}{r_o} \right) \right]$$

$$B \equiv \frac{(r^*)^2 - 1}{\ln r^*}, \quad M \equiv 1 + (r^*)^2 - B, \quad r^* \equiv \frac{r_i}{r_o}$$

$$\frac{dT}{dx} = \frac{dT_b}{dx} = \frac{2 \pi \left(r_o \, q_{w,o} + r_i \, q_{w,i} \right)}{\rho \, c_p \, \overline{u} \, \pi \left(r_o^2 - r_i^2 \right)} \quad (\text{ Heat Balance })$$
Case 1 BCs:
$$T_{r_i} = T_{w,i} \text{ and } q_{w,o} = k \frac{\partial T}{\partial r} |_{r_o}$$
Case 2 BCs:
$$T_{r_o} = T_{w,o} \text{ and } q_{w,i} = -k \frac{\partial T}{\partial r} |_{r_i}$$

where subscripts i and o refer to inner and outer radius.

Annulus Solution - 1 - L17($\frac{6}{19}$) Integrating twice, we get

$$T = A \left[\frac{r^2}{4} - \frac{1}{16} \frac{r^4}{r_o^2} + B \frac{r^2}{4} \left\{ \ln\left(\frac{r}{r_o}\right) - 1 \right\} \right] + C_1 \ln r + C_2$$

$$A = \frac{4}{M} \left(\frac{q_{w,o}}{k r_o} \right) \left(\frac{1 + q^* r^*}{1 - (r^*)^2} \right), \quad q^* = \frac{q_{w,i}}{q_{w,o}}$$
Case 1
$$C_1 = -\frac{q_{w,o} r_o}{k} \left[q^* r^* + \frac{(r^*)^2}{M} \left(\frac{1 + q^* r^*}{1 - (r^*)^2} \right) \left((r^*)^2 - B \right) \right]$$

$$C_2 = T_{w,o} - \frac{A r_o^2}{4} \left(\frac{3}{4} - B \right) - C_1 \ln (r_o)$$
Case 2
$$C_1 = \frac{q_{w,o}}{k r_o} - \frac{A r_o^2}{4} \left(1 - B \right)$$

$$C_2 = T_{w,i} - \frac{A r_i^2}{4} \left[1 - \frac{(r^*)^2}{4} + B \left(\ln (r^*) - 1 \right) \right] C_1 \ln (r_i)$$

4 6 1 1 4

글 🕨 🖌 글

Annulus Solution - Case 1 - L17($\frac{7}{19}$) In more compact form

$$\begin{aligned} \frac{T - T_{w,o}}{q_{w,o} r_o/k} &= \frac{1}{M} \times \frac{1 + q^* r^*}{1 - (r^*)^2} \times F_1 - F_2 \\ F_1 &= B - \frac{3}{4} + (\frac{r}{r_o})^2 \left\{ 1 + B \left(\ln \left(\frac{r}{r_o} \right) - 1 \right) \right\} - \frac{1}{4} (\frac{r}{r_o})^4 \\ F_2 &= q^* r^* + \frac{(r^*)^2}{M} \times \frac{1 + q^* r^*}{1 - (r^*)^2} \times \left\{ (r^*)^2 - B \right\} \end{aligned}$$

We define

$$Nu_o = rac{h_o D_h}{k} = rac{q_{w,o} r_o/k}{T_{w,o} - T_b} imes 2 \left(1 - r^*
ight)$$

where T_b is evaluated by numerical integration.

Annulus Solution - Case 2 - L17($\frac{8}{19}$) Similarly,

$$\begin{aligned} \frac{T - T_{w,i}}{q_{w,i} r_o/k} &= \frac{(r^*)^2}{M} \times \left\{ \frac{1/q^* + r^*}{1 - (r^*)^2} \right\} \times F_3 \\ &+ \left[\frac{1}{q^*} - \frac{1}{M} \times \left\{ \frac{1/q^* + r^*}{1 - (r^*)^2} \right\} \right] \times \ln\left(\frac{r}{r_i}\right) \\ F_3 &= \left(\frac{r}{r_i}\right)^2 - \frac{1}{4} \left(\frac{r}{r_i}\right)^2 \left(\frac{r}{r_o}\right)^2 + B\left(\frac{r}{r_i}\right)^2\right) \left\{ \ln\left(\frac{r}{r_o}\right) - 1 \right\} \\ &- 1 + \left(\frac{r^*}{2}\right)^2 - B \left\{ \ln\left(r^*\right) - 1 \right\} \end{aligned}$$

We define

$$Nu_i = rac{h_i D_h}{k} = rac{q_{w,i} r_o/k}{T_{w,i} - T_b} imes 2 (1 - r^*)$$

where T_b is evaluated by numerical integration.

Annulus Solutions - L17($\frac{9}{19}$)

It is possible to display solutions as

$$Nu_i = rac{Nu_{ii}}{1 - heta_i/q^*}$$
 $Nu_o = rac{Nu_{oo}}{1 - heta_o q^*}$

where $Nu_{ii} = Nu_i (q^* = \infty)$ and $Nu_{oo} = Nu_o (q^* = 0)$.

If $q^* = q_{w,i}/q_{w,o} = \theta_i$, $Nu_i = \infty$. This does not imply infinite heat transfer but simply that $T_{w,i} = T_b$. Similarly, if $q^* < \theta_i$, $Nu_i < 0$ which implies negative h_i . But, this is acceptable. These arguments also apply to Nu_o .

Values of Nu_{ii} , Nu_{oo} and influence coefficients θ_i and θ_o are given on the next slide

くゆ くうとく ひとう う

Annulus Solutions - L17(¹⁰/₁₉)

Annulus Solutions									
<i>r</i> *	Nu _{ii}	θ_i	Nu _{oo}	θο					
0.0	∞	∞	4.364	0.0	circular tube				
0.05	17.81	2.183	4.791	0.0293					
0.10	11.906	1.383	4.834	0.0561					
0.20	8.499	0.904	4.882	0.1038					
0.30	7.241	0.712	4.928	0.1454					
0.40	6.584	0.601	4.975	0.1822					
0.50	6.182	0.527	5.033	0.2153					
0.60	5.911	0.474	5.100	0.2455					
0.70	5.720	0.432	5.166	0.2733					
0.80	5.579	0.397	5.233	0.2991					
0.90	5.471	0.369	5.306	0.3233					
1.00	5.385	0.346	5.385	0.346	parallel plates				

Flat Plate Problem - L17(¹¹/₁₉)

Prob: Consider FD vel and temp profiles between parallel plates 5 cm apart. The heat fluxes at the two plates are $q_1 = 1 \text{ kW}/m^2$ and $q_2 = 5 \text{ kW}/m^2$. Calculate $T_{w,1}$ and $T_{w,2}$ at an axial location where $T_b = 30^{\circ}$ C. Take k = 0.2 W/m-K **soln**:

$$Nu_1 = \frac{h_1 D_h}{k} = \frac{Nu_{11}}{1 - \theta_1/q^*} = \frac{5.385}{1 - 0.346/0.2} = -7.377$$

Therefore, $h_1 = -7.377 \times 0.2/(2 \times 0.05) = -14.753$ W / m^2 -K. Now, $q_1 = h_1 (T_{w,1} - T_b)$. Therefore, $T_{w,1} = 1000/(-14.753) + 30 = -37.78^{\circ}$ C.

Similar evaluations at plate 2, give $Nu_2 = 5.785$, $h_2 = 11.57$ W / m^2 -K and $T_{w,2} = 5000/(11.57) + 30 = 462.12^{\circ}$ C.

(日本) (日本) (日本) 日

Circular Tube - T_w = const - L17($\frac{12}{19}$)

In this case, we define

$$Nu_T = \frac{h2R}{k} = \frac{\partial T}{\partial r} |_R \times \frac{2R}{T_w - T_b} = \text{constant}$$

Then, from slide 2 and carrying out heat balance, we have

$$\frac{dT}{dx} = \Phi \frac{dT_b}{dx}, \qquad \frac{dT_b}{dx} = \left(\frac{2\alpha}{\overline{u}R}\right) \frac{\partial T}{\partial r} |_R$$

Using above relations, the governing equation becomes

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = \frac{u}{\alpha} \frac{\partial T}{\partial x} \text{ original eqn}$$
$$\frac{1}{r^*} \frac{d}{d r^*} \left(r^* \frac{d \Phi}{d r^*} \right) = -2 N u_T \Phi \left\{ 1 - (r^*)^2 \right\}$$

with $\Phi_{r^*=1} = 0$ and $d \Phi/d r^* |_{r^*=0} = 0$. where $r^* = r/R$

Circular Tube - T_w = const - Soln - L17($\frac{13}{19}$)

The 2nd order ODE is solved by Shooting Method . The procedure is

- Assume Nu
- 3 Solve the ODE on a computer starting with $d \Phi/d r^* |_{r^*=0}$
- **③** Examine if predicted $\Phi_{r^*=1} = 0$.
- If not, revise Nu

Analytical soln is also possible. It reads

$$\Phi = \sum_{n=0}^{\infty} C_{2n} (r^*)^{2n} \text{ with } C_0 = 1, \quad C_2 = -\frac{Nu_T}{2}$$

and $C_{2n} = \frac{Nu_T}{4 n^2} (C_{2n-4} - C_{2n-2})$

The soln is Nu_T = 3.656. For parallel plates, Nu_T = 7.545.

Circular Tube - Viscous Heating - L17(¹⁴/₁₉)

In highly viscous (Pr>>1) laminar flows, effect of viscous heating must be accounted. Thus, the governing equation is

 $\frac{u_{fd}}{\alpha} \frac{dT}{dx} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\mu}{k} \left(\frac{\partial u_{fd}}{\partial r} \right)^2$ (a1) $u_{fd} = 2 \overline{u} \left(1 - \frac{r^2}{R^2}\right)$ and $\frac{dT}{dv} = \frac{dT_b}{dv} = \text{const}$ $\left(\frac{\partial u_{fd}}{\partial r}\right)^2 = \left(-\frac{4\,\overline{u}\,r}{R^2}\right)^2 = 16\,\frac{\overline{u}^2\,r^2}{R^4}$ $2\frac{\overline{u}}{\alpha}\left(1-\frac{r^2}{B^2}\right)\frac{dT_b}{dx} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + 16\frac{\mu}{k}\frac{\overline{u}^2 r^2}{B^4} \quad (a2)$ BCs = $(\frac{\partial T}{\partial r})_{r=0} = 0$, and $(\frac{\partial T}{\partial r})_{r=R} = \frac{q_w}{k}$

Viscous Heating -Soln - 1 - L17($\frac{15}{19}$)

To determine $d T_b/dx$, we integrate Equation (a1) from r = 0 to r = R. Then, using BCs, it can be shown that

$$rac{d T_b}{dx} = rac{2 q_w lpha}{k \, \overline{u} \, R} + rac{8 \, \mu \, \overline{u}}{
ho \, c_p \, R^2}$$
 (a3)

Hence, Equation (a2) will read as

$$2 \frac{u_{fd}}{k} \left(\frac{q_w}{\overline{u} R} + 4 \frac{\mu \overline{u}}{R^2}\right) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r}\right) + 16 \frac{\mu}{k} \frac{\overline{u}^2 r^2}{R^4} \quad (a4)$$

Substituting for u_{fd} , we integrate this equation twice to determine the temperature profile (see next slide)

Viscous Heating -Soln - 2 - L17($\frac{16}{19}$)

The solution is

$$T - T_w = 2\frac{\overline{u}}{k}\left(\frac{q_w}{\overline{u}R} + 4\frac{\mu\,\overline{u}}{R^2}\right)\left[\frac{r^2}{2} - \frac{r^4}{8\,R^2} - \frac{3\,R^2}{8}\right] - \frac{\mu\,\overline{u}^2}{k}\left(\frac{r^4}{R^4} - 1\right)$$

Hence, T_b evaluates to

$$T_{w} - T_{b} = \frac{11}{48} \times \frac{2 \,\overline{u} \, R^{2}}{k} \left(\frac{q_{w}}{\overline{u} \, R} + 4 \, \frac{\mu \,\overline{u}}{R^{2}}\right) - \frac{5}{6} \left(\frac{\mu \,\overline{u}^{2}}{k}\right)$$
$$= \frac{11}{48} \left(\frac{q_{w} \, D}{k}\right) + \left(\frac{\mu \,\overline{u}^{2}}{k}\right) \quad (a5)$$

Dividing this equation by $q_w D/k$ gives the Nusselt number (see next slide)

3

Viscous Heating -Soln - 3 - L17($\frac{17}{19}$)

Hence, from Equation (a5)

$$Nu = \frac{q_w}{T_w - T_b} \frac{D}{k}$$
$$= \left[\frac{11}{48} + \frac{\mu \overline{u}^2}{q_w D}\right]^{-1}$$
$$= \frac{192}{44 + 192 Br}$$
$$Br = \frac{\mu \overline{u}^2}{q_w D}$$
Brinkman Number

If Br = 0, we recover Nu = 4.364.

Circular Tube - Axial conduction - L17 $\left(\frac{18}{19}\right)$

In liquid metals ($\Pr<<1$) and T_w = const. boundary condition, effect of axial conduction becomes important . The governing equation is

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{\partial^2 T}{\partial x^2} = \frac{u_{fd}}{\alpha}\frac{dT}{dx}$$

This 2D equation can be solved by analytical method or by Finite Difference method (FDM). The FDM solutions for different Peclet nos ($Pe = Re \times Pr$) are

Pe	Nu _{fd}	Pe	Nu _{fd}	Pe	Nu _{fd}
0.1	4.057	1.5	3.96	5.0	3.885
0.5	4.017	2.0	3.91	7.5	3.870
1.0	3.980	3.0	3.896	10.0	3.85

As Pe \rightarrow 0, Nu = 4.364, and as Pe $\rightarrow ~\infty,$ Nu = 3.667.

Circular Tube - $q_W(\theta)$ **-** L17($\frac{19}{19}$) Frequently, heat flux variation is irregular around the circumference (due to radiant heating or wall thickness variation in thin-walled tubes) but axially constant . For this case,

$$\frac{u_{fd}}{\alpha} \frac{d T_b}{dx} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2}, \qquad \frac{d T_b}{dx} = \frac{2 \overline{q}}{\rho c_p \overline{u} R}$$

Bcs $k \left(\frac{\partial T}{\partial r} \right)_{r=R} = q_w \left(\theta \right) \text{ and } \left(\frac{\partial T}{\partial r} \right)_{r=0} = 0.$

This 2D equation can be solved by analytical method or by FDM. For $q_w(\theta) = \overline{q} (1 + b \cos \theta)$, the solution is

$$Nu_{\theta} = \left\{ \frac{q_{w}\left(\theta\right)}{T_{w}\left(\theta\right) - T_{b}} \right\} \left(\frac{2 R}{k}\right) = \frac{1 + b \cos \theta}{11/48 + 0.5 b \cos \theta}$$

where b is a parameter. Nu_{θ} can assume both positive and negative values. For b = 0, Nu_{θ} = 48/11 = 4.364