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LECTURE-17 FULLY-DEVELOPED
LAMINAR FLOW HEAT TRANSFER-1

@ Definition of Fully Developed Heat Transfer
@ Nusselt number - Circular Tube family
@ Circular Tube - Const Wall Heat Flux
@ Annulus - Const Wall Heat Flux
© Circular Tube - Const Wall Temperature
@ Circular Tube - Const Wall Heat Flux with Viscous Heating
@ Circular Tube - Circumferential Heat Flux Variation.
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FD Heat Tr - Definition - 1 - L17(5;)
¢ 4 E— $ t J i Ty, = constant
e P ot

Thermal Development Length Thermal Development Length

X3 X3

The figure shows axial variations of wall temperature T,,
fluid-bulk temperature T, and heat transfer coefficient h in a duct
following entry of uniform temperature fluid. Fully developed
heat transfer is identified with constancy of h with axial distance
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FD Heat Tr - Definition - 2 - L17(%)
We define
Tw (x)— T (x,r)

®(x,r) T () = T (%) where
- JapcouTdA
o JapCoudA

In Fully-developed heat transfer 0¢/0x = 0 or, ® is constant with
x. Therefore,

o0 (OT/0r),- . qw (X)/K _h_
ar == T 0T, I(?x) =T 00 =T, (0~ k — constant

In developing heat transfer, however, 0®/0x =f ( x, r).
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Circular Tube - g, = const - L1 7(%)

In fully developed flow and heat transfer, the governing equation

will read as
10,07, _ udT _uydl . r?
rorlar) = aox T ax w=2U0g)
dT _ dT, _dT, _ qu2rR _
BUt o T ok dx Cpc,UrmR? = const
10, 0T, Qw
or ——-(r50) = 4(1- Rz)kR (at)

with boundary conditions T = T, atr=Rand 0T /or=0atr =
0. Therefore, integrating Equation ( a1 ) twice and using BCs to
determine integration constants, we have ( next slide )
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Circular Tube - g,, = const - L17(:%)

4
“akR kR Tam

JapcouTdA s uTrdr_T 11, qu

T = (Ty 3 qW) Gu (r? ) Hence,

T, = _ N LN
’ JapCoudA Furadr =24k R
~ hD 2R quw 48
Nup = 55 = (50) 7 = 37 = 4.9696

Similar analysis for FD flow and heat transfer between two
parallel plates separated by distance 2b between the plates
gives

h4b

NUDh = T = 8.235
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Annulus - L1 7( 5)

The governing equation WI|| read as

uoT _ ugdT 19 0T,
adx  a dx ror: or
U _ 2 [ (o,
Y= e
(r) —1 ) * li
B =-~—— M=1+((")>-B, r=—
In r= r
ar _ dTs _ 27 (foQwot i C72w,/) ( Heat Balance )
ax ax pCyum(rz —re)
Case 1 BCs: T, =Ty, and qwok%Tlo
oT
Case 2 BCs: T, = Two and qu; = — kwlr,

where subscripts i and o refer to inner and outer radius.
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Annulus Solution - 1 - L17(:3)

Integrating twice, we get

r2
T = A{Z— 4 {In }:|+C1|nr+02
_ i Qw,o 1+q*f* «_ Qw,i
A - M(kro)(

1—(!’*)2)’ 9= Cywo
Case 1 C1:_qwo o { ( ) (1+q re ((I’*)Z—B)}

(r*)2
C - TW,C,—ATrg(g—B)—C1 In (1)
Case2 G = iwr’;’ - A4’3 (1 - B)
C — TW,—A4”‘2 {1 (r;)2+B(In( ) )] C:In ()
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Annulus Solution - Case 1 - L17(:%)
In more compact form

T~ Two 1 1+qr

Gorolk M=
B 3 . r 1.1,
Fi = B_Z+(ro) {1+B(In( )—1)} (ro)
_ kK (r*)Z 1+qr *2_
Fg—qr+M><1_(r*)2><{(r) B}
We define
_hoDh_qw,oro/k e
Nu, = . _Tw,o_TbX2(1 r)

where T, is evaluated by numerical integration.
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Annulus Solution - Case 2 - L17()

Similarly,
T—Tuwi (r<)? 1/q*+r
Guilo/k M ><{1—(r*)2 s

[ g e

R (F- g PR BOA () -1}

— 1+(%*)2—B{In(r*)—1}

We define

hiDn  Qu,iro/k
i = = 7 1—-r
Nu P 7_WJ_Tb><2( r)

where T, is evaluated by numerical integration.
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Annulus Solutions - L17(:3)

It is possible to display solutions as

NU,',‘ Nuoo

NU,' = NUO = m

where Nu; = Nu; (g* = o) and Nu,, = Nu, (g* = 0).

If * = Qw.i/Qw.0 = 0i, Nu; = co. This does not imply infinite heat
transfer but simply that 7,,; = Tp. Similarly, if g* < 6;, Nu; < 0
which implies negative h;. But, this is acceptable. These

arguments also apply to Nu,.

Values of Nu;;, Nu,, and influence coefficients 6, and 6, are
given on the next slide
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Annulus Solutions - L17(33

Annulus Solutions
re NU,',' 0; NUOO 90
0.0 | > 00 4.364 | 0.0 circular tube
0.05|17.81 | 2.183 | 4.791 | 0.0293
0.10 | 11.906 | 1.383 | 4.834 | 0.0561
0.20 | 8.499 | 0.904 | 4.882 | 0.1038
0.30 | 7.241 0.712 | 4.928 | 0.1454
0.40 | 6.584 | 0.601 | 4.975 | 0.1822
0.50 | 6.182 | 0.527 | 5.033 | 0.2153
0.60 | 5.911 | 0.474 | 5.100 | 0.2455
0.70 | 5.720 0.432 | 5.166 | 0.2733
0.80 | 5.579 | 0.397 | 5.233 | 0.2991
0.90 | 5.471 | 0.369 | 5.306 | 0.3233
1.00 | 5.385 | 0.346 | 5.385 | 0.346 | parallel plates
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Flat Plate Problem - L17(1}

Prob: Consider FD vel and temp profiles between parallel plates
5 cm apart. The heat fluxes at the two plates are gy = 1 KW/m?
and g = 5 kW/m?. Calculate Tw1and T, at an axial location
where T, = 30°C. Take k = 0.2 W/m-K

soln:

. h1 Dh . NU11 5.385

N = == =7=4,/g¢ ~ T-0346/02

—7.377

Therefore, hy = —7.377 x 0.2/(2 x 0.05) = — 14.753 W / m?-K.
Now, g1 = hy (Tw1 — Tp). Therefore,
Tw1 = 1000/(— 14.753) + 30 = — 37.78°C.

Similar evaluations at plate 2, give Nu, = 5.785, h, = 11.57 W/
m?-K and T, » = 5000/( 11.57) + 30 = 462.12°C.
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Circular Tube - T,, = const - L17(35
In this case, we define

R T 2R
NUT—hL 0

P 5 |r x T, constant

Then, from slide 2 and carrying out heat balance, we have

ar _ dTy,  dTy _ 20 0T

dx  dx’ dx (uR) (’9r|
Using above relations, the governing equation becomes
12(r ﬂ) _ uor original egn
ror> or’ o« ox g g
1 d % do o *)2
Fdr*(r dr*) = —2Nuro {1-(r)?}

with ®,._y =0and d ¢/d r* |;~—o = 0. where r*=r/R

March 26, 2012 14/21



Circular Tube - T, = const - Soln - L17({3
The 2nd order ODE is solved by Shooting Method . The
procedure is

@ Assume Nu

@ Solve the ODE on a computer starting with d ®/d r* |,

@ Examine if predicted ¢,._; = 0.

© If not, revise Nu
Analytical soln is also possible. It reads

NUT

> Con(r)?" with Co=1, Co=-— "

NUT

and Con = i (Con-a — Con->)

The soln is Nur = 3.656. For parallel plates, Nur = 7.545.
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Circular Tube - Viscous Heating - L17(]3

In highly viscous ( Pr >> 1) laminar flows, effect of viscous
heating must be accounted. Thus, the governing equation is

Ug = 23(1—;—22) d%—%:c nst
Qe (41670
oT oT Qw

BOs = (5 )m0=0, and (51)-p= M

March 26,2012 16/21



Viscous Heating -Soln - 1 - L17(33

To determine d T,/dx, we integrate Equation (a1 ) fromr=0tor
= R. Then, using BCs, it can be shown that

dTp, 2quwa 8uu
dx kUR pc,R?
Hence, Equation ( a2 ) will read as

(a3)

U Gw pd, 10, 0T U r?
2 GrT AR —rar ) 18 (34)
Substituting for uy, we integrate this equation twice to determine
the temperature profile ( see next slide )
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Viscous Heating -Soln - 2 - L17(33

The solution is

T—Ty=2

U, Qu pa, [r? r* 3R uu "o
k(uR 4R2) 2 8HR? 8 k (R4 1)

Hence, T, evaluates to

11 2UR?  q, wu 5
Tw=To = 28% % (uR YR s i)
i qw D MU

Dividing this equation by g, D/k gives the Nusselt number ( see
next slide )
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Viscous Heating -Soln - 3 - L17(3;

Hence, from Equation ( a5)

_ _aw D
W= T Tk
11 UG
_ (1 pT
48 qu D
192
44 4192 Br

—2
Br = MUD Brinkman Number

qw

If Br = 0, we recover Nu = 4.364.

—1
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Circular Tube - Axial conduction - L17({3

In liquid metals ( Pr << 1) and T, = const. boundary condition,
effect of axial conduction becomes important . The governing
equation is

10 0T PT ugdl

ror: or 0x? a dx
This 2D equation can be solved by analytical method or by
Finite Difference method ( FDM ). The FDM solutions for
different Peclet nos ( Pe = Re x Pr) are

Pe | Nuy Pe | Nuy Pe Nuyy
0.1 405715396 |50 |3.885
0.5]4.017| 2.0 | 3.91 7.5 | 3.870
1.0 1 3.980 | 3.0 | 3.896 | 10.0 | 3.85

As Pe — 0, Nu = 4.364, and as Pe — oo, Nu = 3.667.
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Circular Tube - g, (¢) - L17(33)
Frequently, heat flux variation is irregular around the
circumference ( due to radiant heating or wall thickness variation
in thin-walled tubes ) but axially constant . For this case,

%_dTb — lg(rﬂ-)+lazT dTb_ 2?]
a dx  rar‘ ar’ " r2 ge2’ dx pc,UR
oT oT
Bes k (E)r:R =quw (/) and (W)’:O -0

This 2D equation can be solved by analytical method or by
FDM. For g (/) = g (1 + bcos 0) , the solution is

B qw (0) 2R, 1+ bcos 0
W= {77 ¢

k )= 11/48 + 0.5 bcos ¢

where b is a parameter. Nu, can assume both positive and
negative values. For b = 0, Nuy = 48/11 = 4.364.
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