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LECTURE-17 FULLY-DEVELOPED
LAMINAR FLOW HEAT TRANSFER-1

1 Definition of Fully Developed Heat Transfer
2 Nusselt number - Circular Tube family

1 Circular Tube - Const Wall Heat Flux
2 Annulus - Const Wall Heat Flux
3 Circular Tube - Const Wall Temperature
4 Circular Tube - Const Wall Heat Flux with Viscous Heating
5 Circular Tube - Circumferential Heat Flux Variation.
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FD Heat Tr - Definition - 1 - L17( 1
19)
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The figure shows axial variations of wall temperature Tw ,
fluid-bulk temperature Tb and heat transfer coefficient h in a duct
following entry of uniform temperature fluid. Fully developed
heat transfer is identified with constancy of h with axial distance
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FD Heat Tr - Definition - 2 - L17( 2
19)

We define

Φ (x , r) =
Tw (x)− T (x , r)

Tw (x)− Tb (x)
where

Tb =

∫
A ρ cp u T dA∫

A ρ cp u dA

In Fully-developed heat transfer ∂Φ/∂x = 0 or, Φ is constant with
x. Therefore,

∂Φ

∂r
|r=R = − (∂T/∂r)r=R

Tw (x)− Tb (x)
=

qw (x)/k
Tw (x)− Tb (x)

=
h
k

= constant

In developing heat transfer, however, ∂Φ/∂x = f ( x, r ).
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Circular Tube - qw = const - L17( 3
19)

In fully developed flow and heat transfer, the governing equation
will read as

1
r
∂

∂r
(r
∂T
∂r

) =
u
α

∂T
∂x

=
ufd

α

dT
dx

, ufd = 2 u (1− r 2

R2 )

But
dT
dx

=
dTw

dx
=

dTb

dx
=

qw 2 π R
ρ cp u π R2 = const

or
1
r
∂

∂r
(r
∂T
∂r

) = 4 (1− r 2

R2 )
qw

k R
( a1 )

with boundary conditions T = Tw at r = R and ∂T/∂r = 0 at r =
0. Therefore, integrating Equation ( a1 ) twice and using BCs to
determine integration constants, we have ( next slide )
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Circular Tube - qw = const - L17( 4
19)

T = (Tw −
3
4

qw

k R
) +

qw

k R
(r 2 − r 4

4 R4 ) Hence,

Tb =

∫
A ρ cp u T dA∫

A ρ cp u dA
=

∫ R
0 u T r dr∫ R

0 u r dr
= Tw −

11
24

(
qw

k R
)

NuD =
h D
k

= (
2 R
k

)
qw

Tw − Tb
=

48
11

= 4.3636

Similar analysis for FD flow and heat transfer between two
parallel plates separated by distance 2b between the plates
gives

NuDh =
h 4b

k
= 8.235
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Annulus - L17( 5
19)

The governing equation will read as

u
α

∂T
∂x

=
ufd

α

dT
dx

=
1
r
∂

∂r
(r
∂T
∂r

)

ufd

u
=

2
M

[
1− (

r
ro

)2 + B ln (
r
ro

)

]
B ≡ (r ∗)2 − 1

ln r ∗
, M ≡ 1 + (r ∗)2 − B, r ∗ ≡ ri

ro

dT
dx

=
dTb

dx
=

2 π (ro qw ,o + ri qw ,i)

ρ cp u π (r 2
o − r 2

i )
( Heat Balance )

Case 1 BCs: Tri = Tw ,i and qw ,o = k
∂T
∂r
|ro

Case 2 BCs: Tro = Tw ,o and qw ,i = − k
∂T
∂r
|ri

where subscripts i and o refer to inner and outer radius.
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Annulus Solution - 1 - L17( 6
19)

Integrating twice, we get

T = A
[

r 2

4
− 1

16
r 4

r 2
o

+ B
r 2

4

{
ln (

r
ro

)− 1
}]

+ C1 ln r + C2

A =
4
M

(
qw ,o

k ro
) (

1 + q∗ r ∗

1− (r ∗)2 ), q∗ =
qw ,i

qw ,o

Case 1 C1 = − qw ,o ro

k

[
q∗ r ∗ +

(r ∗)2

M
(
1 + q∗ r ∗

1− (r ∗)2 ) ((r ∗)2 − B)

]
C2 = Tw ,o −

A r 2
o

4
(
3
4
− B)− C1 ln (ro)

Case 2 C1 =
qw ,o

k ro
− A r 2

o

4
(1− B)

C2 = Tw ,i −
A r 2

i

4

[
1− (r ∗)2

4
+ B (ln (r ∗)− 1)

]
C1 ln (ri)
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Annulus Solution - Case 1 - L17( 7
19)

In more compact form

T − Tw ,o

qw ,o ro/k
=

1
M
× 1 + q∗ r ∗

1− (r ∗)2 × F1 − F2

F1 = B − 3
4

+ (
r
ro

)2
{

1 + B (ln (
r
ro

)− 1)

}
− 1

4
(

r
ro

)4

F2 = q∗ r ∗ +
(r ∗)2

M
× 1 + q∗ r ∗

1− (r ∗)2 ×
{

(r ∗)2 − B
}

We define

Nuo =
ho Dh

k
=

qw ,o ro/k
Tw ,o − Tb

× 2 (1− r ∗)

where Tb is evaluated by numerical integration.
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Annulus Solution - Case 2 - L17( 8
19)

Similarly,

T − Tw ,i

qw ,i ro/k
=

(r ∗)2

M
×
{

1/q∗ + r ∗

1− (r ∗)2

}
× F3

+

[
1
q∗
− 1

M
×
{

1/q∗ + r ∗

1− (r ∗)2

}]
× ln (

r
ri

)

F3 = (
r
ri

)2 − 1
4

(
r
ri

)2 (
r
ro

)2 + B (
r
ri

)2)

{
ln (

r
ro

)− 1
}

− 1 + (
r ∗

2
)2 − B {ln (r ∗)− 1}

We define

Nui =
hi Dh

k
=

qw ,i ro/k
Tw ,i − Tb

× 2 (1− r ∗)

where Tb is evaluated by numerical integration.
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Annulus Solutions - L17( 9
19)

It is possible to display solutions as

Nui =
Nuii

1− θi/q∗
Nuo =

Nuoo

1− θo q∗

where Nuii = Nui (q∗ =∞) and Nuoo = Nuo (q∗ = 0).

If q∗ = qw ,i/qw ,o = θi , Nui =∞. This does not imply infinite heat
transfer but simply that Tw ,i = Tb. Similarly, if q∗ < θi , Nui < 0
which implies negative hi . But, this is acceptable. These
arguments also apply to Nuo.

Values of Nuii , Nuoo and influence coefficients θi and θo are
given on the next slide
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Annulus Solutions - L17(10
19)

Annulus Solutions
r ∗ Nuii θi Nuoo θo

0.0 ∞ ∞ 4.364 0.0 circular tube
0.05 17.81 2.183 4.791 0.0293
0.10 11.906 1.383 4.834 0.0561
0.20 8.499 0.904 4.882 0.1038
0.30 7.241 0.712 4.928 0.1454
0.40 6.584 0.601 4.975 0.1822
0.50 6.182 0.527 5.033 0.2153
0.60 5.911 0.474 5.100 0.2455
0.70 5.720 0.432 5.166 0.2733
0.80 5.579 0.397 5.233 0.2991
0.90 5.471 0.369 5.306 0.3233
1.00 5.385 0.346 5.385 0.346 parallel plates
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Flat Plate Problem - L17(11
19)

Prob: Consider FD vel and temp profiles between parallel plates
5 cm apart. The heat fluxes at the two plates are q1 = 1 kW/m2

and q2 = 5 kW/m2. Calculate Tw ,1 and Tw ,2 at an axial location
where Tb = 30oC. Take k = 0.2 W/m-K
soln:

Nu1 =
h1 Dh

k
=

Nu11

1− θ1/q∗
=

5.385
1− 0.346/0.2

= − 7.377

Therefore, h1 = −7.377× 0.2/(2× 0.05) = − 14.753 W / m2-K.
Now, q1 = h1 (Tw ,1 − Tb). Therefore,
Tw ,1 = 1000/(− 14.753) + 30 = − 37.78oC.

Similar evaluations at plate 2, give Nu2 = 5.785, h2 = 11.57 W /
m2-K and Tw ,2 = 5000/( 11.57) + 30 = 462.12oC.
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Circular Tube - Tw = const - L17(12
19)

In this case, we define

NuT =
h 2 R

k
=
∂T
∂r
|R ×

2 R
Tw − Tb

= constant

Then, from slide 2 and carrying out heat balance, we have

dT
dx

= Φ
dTb

dx
,

dTb

dx
= (

2 α
u R

)
∂T
∂r
|R

Using above relations, the governing equation becomes

1
r
∂

∂r
(r
∂T
∂r

) =
u
α

∂T
∂x

original eqn

1
r ∗

d
d r ∗

(r ∗
d Φ

d r ∗
) = −2 NuT Φ

{
1− (r ∗)2}

with Φr∗=1 = 0 and d Φ/d r ∗ |r∗=0 = 0. where r ∗ = r / R
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Circular Tube - Tw = const - Soln - L17(13
19)

The 2nd order ODE is solved by Shooting Method . The
procedure is

1 Assume Nu
2 Solve the ODE on a computer starting with d Φ/d r ∗ |r∗=0

3 Examine if predicted Φr∗=1 = 0.
4 If not, revise Nu

Analytical soln is also possible. It reads

Φ =
∞∑

n=0

C2n (r ∗)2n with C0 = 1, C2 = − NuT

2

and C2n =
NuT

4 n2 (C2n−4 − C2n−2)

The soln is NuT = 3.656. For parallel plates, NuT = 7.545.
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Circular Tube - Viscous Heating - L17(14
19)

In highly viscous ( Pr >> 1 ) laminar flows, effect of viscous
heating must be accounted. Thus, the governing equation is

ufd

α

dT
dx

=
1
r
∂

∂r
(r
∂T
∂r

) +
µ

k
(
∂ufd

∂r
)2 ( a1 )

ufd = 2 u (1− r 2

R2 ) and
dT
dx

=
dTb

dx
= const

(
∂ufd

∂r
)2 = (− 4 u r

R2 )2 = 16
u2 r 2

R4

2
u
α

(1− r 2

R2 )
dTb

dx
=

1
r
∂

∂r
(r
∂T
∂r

) + 16
µ

k
u2 r 2

R4 ( a2 )

BCs = (
∂T
∂r

)r=0 = 0, and (
∂T
∂r

)r=R =
qw

k
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Viscous Heating -Soln - 1 - L17(15
19)

To determine d Tb/dx, we integrate Equation ( a1 ) from r = 0 to r
= R. Then, using BCs, it can be shown that

d Tb

dx
=

2 qw α

k u R
+

8 µ u
ρ cp R2 ( a3 )

Hence, Equation ( a2 ) will read as

2
ufd

k
(

qw

u R
+ 4

µ u
R2 ) =

1
r
∂

∂r
(r
∂T
∂r

) + 16
µ

k
u2 r 2

R4 ( a4 )

Substituting for ufd , we integrate this equation twice to determine
the temperature profile ( see next slide )
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Viscous Heating -Soln - 2 - L17(16
19)

The solution is

T −Tw = 2
u
k

(
qw

u R
+ 4

µ u
R2 )

[
r 2

2
− r 4

8 R2 −
3 R2

8

]
− µ u2

k
(

r 4

R4 − 1)

Hence, Tb evaluates to

Tw − Tb =
11
48
× 2 u R2

k
(

qw

u R
+ 4

µ u
R2 )− 5

6
(
µ u2

k
)

=
11
48

(
qw D

k
) + (

µ u2

k
) ( a5 )

Dividing this equation by qwD/k gives the Nusselt number ( see
next slide )
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Viscous Heating -Soln - 3 - L17(17
19)

Hence, from Equation ( a5 )

Nu =
qw

Tw − Tb

D
k

=

[
11
48

+
µ u2

qw D

]−1

=
192

44 + 192 Br

Br =
µ u2

qw D
Brinkman Number

If Br = 0, we recover Nu = 4.364.
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Circular Tube - Axial conduction - L17(18
19)

In liquid metals ( Pr << 1 ) and Tw = const. boundary condition,
effect of axial conduction becomes important . The governing
equation is

1
r
∂

∂r
(r
∂T
∂r

) +
∂2T
∂x2 =

ufd

α

dT
dx

This 2D equation can be solved by analytical method or by
Finite Difference method ( FDM ). The FDM solutions for
different Peclet nos ( Pe = Re × Pr ) are

Pe Nufd Pe Nufd Pe Nufd

0.1 4.057 1.5 3.96 5.0 3.885
0.5 4.017 2.0 3.91 7.5 3.870
1.0 3.980 3.0 3.896 10.0 3.85

As Pe→ 0, Nu = 4.364, and as Pe→ ∞, Nu = 3.667.
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Circular Tube - qw (θ) - L17(19
19)

Frequently, heat flux variation is irregular around the
circumference ( due to radiant heating or wall thickness variation
in thin-walled tubes ) but axially constant . For this case,

ufd

α

d Tb

dx
=

1
r
∂

∂r
(r
∂T
∂r

) +
1
r 2

∂2T
∂θ2 ,

d Tb

dx
=

2 q
ρ cp u R

Bcs k (
∂T
∂r

)r=R = qw (θ) and (
∂T
∂r

)r=0 = 0.

This 2D equation can be solved by analytical method or by
FDM. For qw (θ) = q (1 + b cos θ) , the solution is

Nuθ =

{
qw (θ)

Tw (θ)− Tb

}
(
2 R
k

) =
1 + b cos θ

11/48 + 0.5 b cos θ
where b is a parameter. Nuθ can assume both positive and
negative values. For b = 0, Nuθ = 48/11 = 4.364.
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