ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-17 FULLY-DEVELOPED LAMINAR FLOW HEAT TRANSFER-1

LECTURE-17 FULLY-DEVELOPED LAMINAR FLOW HEAT TRANSFER-1

(1) Definition of Fully Developed Heat Transfer
(2) Nusselt number - Circular Tube family
(1) Circular Tube - Const Wall Heat Flux
(2) Annulus - Const Wall Heat Flux
(3) Circular Tube - Const Wall Temperature
(4) Circular Tube - Const Wall Heat Flux with Viscous Heating
(5) Circular Tube - Circumferential Heat Flux Variation.

FD Heat Tr - Definition - 1-L17($\left.\frac{1}{19}\right)$

Thermal Development Length

$\mathbf{T}_{\mathbf{W}}=$ constant

The figure shows axial variations of wall temperature T_{w}, fluid-bulk temperature T_{b} and heat transfer coefficient h in a duct following entry of uniform temperature fluid. Fully developed heat transfer is identified with constancy of h with axial distance

FD Heat Tr - Definition - 2 - L17 $\left(\frac{2}{19}\right)$

We define

$$
\begin{aligned}
\Phi(x, r) & =\frac{T_{w}(x)-T(x, r)}{T_{w}(x)-T_{b}(x)} \text { where } \\
T_{b} & =\frac{\int_{A} \rho c_{p} u T d A}{\int_{A} \rho c_{p} u d A}
\end{aligned}
$$

In Fully-developed heat transfer $\partial \Phi / \partial x=0$ or, Φ is constant with x. Therefore,

$$
\left.\frac{\partial \Phi}{\partial r}\right|_{r=R}=-\frac{(\partial T / \partial r)_{r=R}}{T_{w}(x)-T_{b}(x)}=\frac{q_{w}(x) / k}{T_{w}(x)-T_{b}(x)}=\frac{h}{k}=\text { constant }
$$

In developing heat transfer, however, $\partial \Phi / \partial x=f(x, r)$.

Circular Tube $-q_{w}=$ const $-\operatorname{L17}\left(\frac{3}{19}\right)$

In fully developed flow and heat transfer, the governing equation will read as

$$
\begin{aligned}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) & =\frac{u}{\alpha} \frac{\partial T}{\partial x}=\frac{u_{f d}}{\alpha} \frac{d T}{d x}, \quad u_{f d}=2 \bar{u}\left(1-\frac{r^{2}}{R^{2}}\right) \\
\text { But } \frac{d T}{d x} & =\frac{d T_{w}}{d x}=\frac{d T_{b}}{d x}=\frac{q_{w} 2 \pi R}{\rho c_{p} \bar{u} \pi R^{2}}=\mathrm{const} \\
\text { or } \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) & =4\left(1-\frac{r^{2}}{R^{2}} \frac{q_{w}}{k R} \quad(\text { a1 })\right.
\end{aligned}
$$

with boundary conditions $T=T_{w}$ at $\mathrm{r}=\mathrm{R}$ and $\partial T / \partial r=0$ at $\mathrm{r}=$ 0 . Therefore, integrating Equation (a1) twice and using BCs to determine integration constants, we have (next slide)

Circular Tube $-q_{w}=$ const $-\operatorname{L17}\left(\frac{4}{19}\right)$

$$
\begin{aligned}
T & =\left(T_{w}-\frac{3}{4} \frac{q_{w}}{k R}\right)+\frac{q_{w}}{k R}\left(r^{2}-\frac{r^{4}}{4 R^{4}}\right) \text { Hence, } \\
T_{b} & =\frac{\int_{A} \rho c_{p} u T d A}{\int_{A} \rho c_{p} u d A}=\frac{\int_{0}^{R} u T r d r}{\int_{0}^{R} u r d r}=T_{w}-\frac{11}{24}\left(\frac{q_{w}}{k R}\right) \\
N u_{D} & =\frac{h D}{k}=\left(\frac{2 R}{k}\right) \frac{q_{w}}{T_{w}-T_{b}}=\frac{48}{11}=4.3636
\end{aligned}
$$

Similar analysis for FD flow and heat transfer between two parallel plates separated by distance 2 b between the plates gives

$$
N u_{D_{h}}=\frac{h 4 b}{k}=8.235
$$

Annulus - L17 ($\frac{5}{19}$)

The governing equation will read as

$$
\begin{aligned}
\frac{u}{\alpha} \frac{\partial T}{\partial x} & =\frac{u_{f d}}{\alpha} \frac{d T}{d x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) \\
\frac{u_{f d}}{\bar{u}} & =\frac{2}{M}\left[1-\left(\frac{r}{r_{o}}\right)^{2}+B \ln \left(\frac{r}{r_{o}}\right)\right] \\
B & \equiv \frac{\left(r^{*}\right)^{2}-1}{\ln r^{*}}, \quad M \equiv 1+\left(r^{*}\right)^{2}-B, \quad r^{*} \equiv \frac{r_{i}}{r_{o}} \\
\frac{d T}{d x} & =\frac{d T_{b}}{d x}=\frac{2 \pi\left(r_{o} q_{w, o}+r_{i} q_{w, i}\right)}{\rho c_{p} \bar{u} \pi\left(r_{o}^{2}-r_{i}^{2}\right)} \quad(\text { Heat Balance) }
\end{aligned}
$$

Case $1 \mathrm{BCs}: \quad T_{r_{i}}=T_{w, i}$ and $q_{w, o}=\left.k \frac{\partial T}{\partial r}\right|_{r_{0}}$
Case 2 BCs: $\quad T_{r_{o}}=T_{w, o}$ and $q_{w, i}=-\left.k \frac{\partial T}{\partial r}\right|_{r_{i}}$
where subscripts i and o refer to inner and outer radius.

Annulus Solution - 1-L17 ($\frac{6}{19}$)

Integrating twice, we get

$$
\begin{aligned}
& T=A\left[\frac{r^{2}}{4}-\frac{1}{16} \frac{r^{4}}{r_{o}^{2}}+B \frac{r^{2}}{4}\left\{\ln \left(\frac{r}{r_{o}}\right)-1\right\}\right]+C_{1} \ln r+C_{2} \\
& A=\frac{4}{M}\left(\frac{q_{w, o}}{k r_{o}}\right)\left(\frac{1+q^{*} r^{*}}{1-\left(r^{*}\right)^{2}}\right), \quad q^{*}=\frac{q_{w, i}}{q_{w, o}}
\end{aligned}
$$

Case $1 \quad C_{1}=-\frac{q_{w, o} r_{0}}{k}\left[q^{*} r^{*}+\frac{\left(r^{*}\right)^{2}}{M}\left(\frac{1+q^{*} r^{*}}{1-\left(r^{*}\right)^{2}}\right)\left(\left(r^{*}\right)^{2}-B\right)\right]$

$$
C_{2}=T_{w, o}-\frac{A r_{o}^{2}}{4}\left(\frac{3}{4}-B\right)-C_{1} \ln \left(r_{0}\right)
$$

Case $2 \quad C_{1}=\frac{q_{w, o}}{k r_{o}}-\frac{A r_{o}^{2}}{4}(1-B)$

$$
C_{2}=T_{w, i}-\frac{A r_{i}^{2}}{4}\left[1-\frac{\left(r^{*}\right)^{2}}{4}+B\left(\ln \left(r^{*}\right)-1\right)\right] C_{1} \ln \left(r_{i}\right)
$$

Annulus Solution - Case 1-L17($\frac{7}{19}$)

In more compact form

$$
\begin{aligned}
\frac{T-T_{w, o}}{q_{w, o} r_{o} / k} & =\frac{1}{M} \times \frac{1+q^{*} r^{*}}{1-\left(r^{*}\right)^{2}} \times F_{1}-F_{2} \\
F_{1} & =B-\frac{3}{4}+\left(\frac{r}{r_{o}}\right)^{2}\left\{1+B\left(\ln \left(\frac{r}{r_{o}}\right)-1\right)\right\}-\frac{1}{4}\left(\frac{r}{r_{o}}\right)^{4} \\
F_{2} & =q^{*} r^{*}+\frac{\left(r^{*}\right)^{2}}{M} \times \frac{1+q^{*} r^{*}}{1-\left(r^{*}\right)^{2}} \times\left\{\left(r^{*}\right)^{2}-B\right\}
\end{aligned}
$$

We define

$$
N u_{o}=\frac{h_{o} D_{h}}{k}=\frac{q_{w, o} r_{o} / k}{T_{w, o}-T_{b}} \times 2\left(1-r^{*}\right)
$$

where T_{b} is evaluated by numerical integration.

Annulus Solution - Case 2 - L17 $\left(\frac{8}{19}\right)$

Similarly,

$$
\begin{aligned}
\frac{T-T_{w, i}}{q_{w, i} r_{o} / k} & =\frac{\left(r^{*}\right)^{2}}{M} \times\left\{\frac{1 / q^{*}+r^{*}}{1-\left(r^{*}\right)^{2}}\right\} \times F_{3} \\
& +\left[\frac{1}{q^{*}}-\frac{1}{M} \times\left\{\frac{1 / q^{*}+r^{*}}{1-\left(r^{*}\right)^{2}}\right\}\right] \times \ln \left(\frac{r}{r_{i}}\right) \\
F_{3} & \left.=\left(\frac{r}{r_{i}}\right)^{2}-\frac{1}{4}\left(\frac{r}{r_{i}}\right)^{2}\left(\frac{r}{r_{o}}\right)^{2}+B\left(\frac{r}{r_{i}}\right)^{2}\right)\left\{\ln \left(\frac{r}{r_{o}}\right)-1\right\} \\
& -1+\left(\frac{r^{*}}{2}\right)^{2}-B\left\{\ln \left(r^{*}\right)-1\right\}
\end{aligned}
$$

We define

$$
N u_{i}=\frac{h_{i} D_{h}}{k}=\frac{q_{w, i} r_{0} / k}{T_{w, i}-T_{b}} \times 2\left(1-r^{*}\right)
$$

where T_{b} is evaluated by numerical integration.

Annulus Solutions - L17 ($\left(\frac{9}{19}\right)$

It is possible to display solutions as

$$
N u_{i}=\frac{N u_{i i}}{1-\theta_{i} / q^{*}} \quad N u_{o}=\frac{N u_{o o}}{1-\theta_{0} q^{*}}
$$

where $N u_{i i}=N u_{i}\left(q^{*}=\infty\right)$ and $N u_{o o}=N u_{o}\left(q^{*}=0\right)$.
If $q^{*}=q_{w, i} / q_{w, o}=\theta_{i}, N u_{i}=\infty$. This does not imply infinite heat transfer but simply that $T_{w, i}=T_{b}$. Similarly, if $q^{*}<\theta_{i}, N u_{i}<0$ which implies negative h_{i}. But, this is acceptable. These arguments also apply to $N u_{0}$.

Values of $N u_{i j}, N u_{o o}$ and influence coefficients θ_{i} and θ_{o} are given on the next slide

Annulus Solutions - L17($\frac{10}{19}$)

Annulus Solutions					
r^{*}	$N u_{i i}$	θ_{i}	$N u_{o o}$	θ_{o}	
0.0	∞	∞	4.364	0.0	circular tube
0.05	17.81	2.183	4.791	0.0293	
0.10	11.906	1.383	4.834	0.0561	
0.20	8.499	0.904	4.882	0.1038	
0.30	7.241	0.712	4.928	0.1454	
0.40	6.584	0.601	4.975	0.1822	
0.50	6.182	0.527	5.033	0.2153	
0.60	5.911	0.474	5.100	0.2455	
0.70	5.720	0.432	5.166	0.2733	
0.80	5.579	0.397	5.233	0.2991	
0.90	5.471	0.369	5.306	0.3233	
1.00	5.385	0.346	5.385	0.346	parallel plates

Flat Plate Problem - L17($\frac{11}{19}$)

Prob: Consider FD vel and temp profiles between parallel plates 5 cm apart. The heat fluxes at the two plates are $q_{1}=1 \mathrm{~kW} / \mathrm{m}^{2}$ and $q_{2}=5 \mathrm{~kW} / \mathrm{m}^{2}$. Calculate $T_{w, 1}$ and $T_{w, 2}$ at an axial location where $T_{b}=30^{\circ} \mathrm{C}$. Take $\mathrm{k}=0.2 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
soln:

$$
N u_{1}=\frac{h_{1} D_{h}}{k}=\frac{N u_{11}}{1-\theta_{1} / q^{*}}=\frac{5.385}{1-0.346 / 0.2}=-7.377
$$

Therefore, $h_{1}=-7.377 \times 0.2 /(2 \times 0.05)=-14.753 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$.
Now, $q_{1}=h_{1}\left(T_{w, 1}-T_{b}\right)$. Therefore, $T_{w, 1}=1000 /(-14.753)+30=-37.78^{\circ} \mathrm{C}$.

Similar evaluations at plate 2, give $N u_{2}=5.785, h_{2}=11.57 \mathrm{~W} /$ $m^{2}-\mathrm{K}$ and $T_{w, 2}=5000 /(11.57)+30=462.12^{\circ} \mathrm{C}$.

Circular Tube $-T_{w}=$ const $-\operatorname{L17}\left(\frac{12}{19}\right)$

In this case, we define

$$
N u_{T}=\frac{h 2 R}{k}=\left.\frac{\partial T}{\partial r}\right|_{R} \times \frac{2 R}{T_{w}-T_{b}}=\text { constant }
$$

Then, from slide 2 and carrying out heat balance, we have

$$
\frac{d T}{d x}=\Phi \frac{d T_{b}}{d x}, \quad \frac{d T_{b}}{d x}=\left.\left(\frac{2 \alpha}{\bar{u} R}\right) \frac{\partial T}{\partial r}\right|_{R}
$$

Using above relations, the governing equation becomes

$$
\begin{aligned}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right) & =\frac{u}{\alpha} \frac{\partial T}{\partial x} \text { original eqn } \\
\frac{1}{r^{*}} \frac{d}{d r^{*}}\left(r^{*} \frac{d \Phi}{d r^{*}}\right) & =-2 N u_{T} \Phi\left\{1-\left(r^{*}\right)^{2}\right\}
\end{aligned}
$$

with $\Phi_{r^{*}=1}=0$ and $d \Phi /\left.d r^{*}\right|_{r^{*}=0}=0$. where $r^{*}=r / R$

Circular Tube $-T_{w}=$ const - Soln $-\operatorname{L17}\left(\frac{13}{19}\right)$

 The 2nd order ODE is solved by Shooting Method. The procedure is(1) Assume Nu
(2) Solve the ODE on a computer starting with $d \Phi /\left.d r^{*}\right|_{r^{*}=0}$
(3) Examine if predicted $\Phi_{r^{*}=1}=0$.
(9) If not, revise Nu

Analytical soln is also possible. It reads

$$
\begin{aligned}
\Phi= & \sum_{n=0}^{\infty} C_{2 n}\left(r^{*}\right)^{2 n} \quad \text { with } \quad C_{0}=1, \quad C_{2}=-\frac{N u_{T}}{2} \\
\text { and } \quad & C_{2 n}=\frac{N u_{T}}{4 n^{2}}\left(C_{2 n-4}-C_{2 n-2}\right)
\end{aligned}
$$

The soln is $N u_{T}=3.656$. For parallel plates, $N u_{T}=7.545$.

Circular Tube - Viscous Heating - L17 $\left(\frac{14}{19}\right)$

 In highly viscous ($\mathrm{Pr} \gg 1$) laminar flows, effect of viscous heating must be accounted. Thus, the governing equation is$$
\begin{aligned}
\frac{u_{f d}}{\alpha} \frac{d T}{d x} & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\mu}{k}\left(\frac{\partial u_{f d}}{\partial r}\right)^{2} \quad(\mathrm{a} 1) \\
u_{f d} & =2 \bar{u}\left(1-\frac{r^{2}}{R^{2}}\right) \quad \text { and } \frac{d T}{d x}=\frac{d T_{b}}{d x}=\mathrm{const} \\
\left(\frac{\partial u_{f d}}{\partial r}\right)^{2} & =\left(-\frac{4 \bar{u} r}{R^{2}}\right)^{2}=16 \frac{\bar{u}^{2} r^{2}}{R^{4}} \\
2 \frac{\bar{u}}{\alpha}\left(1-\frac{r^{2}}{R^{2}}\right) \frac{d T_{b}}{d x} & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+16 \frac{\mu}{k} \frac{\bar{u}^{2} r^{2}}{R^{4}}(\mathrm{a} 2) \\
\mathrm{BCs} & =\left(\frac{\partial T}{\partial r}\right)_{r=0}=0, \quad \text { and } \quad\left(\frac{\partial T}{\partial r}\right)_{r=R}=\frac{q_{w}}{k}
\end{aligned}
$$

Viscous Heating -Soln - 1 - L17 $\left(\frac{15}{19}\right)$

To determine $d T_{b} / \mathrm{dx}$, we integrate Equation (a1) from $\mathrm{r}=0$ to r $=R$. Then, using BCs, it can be shown that

$$
\frac{d T_{b}}{d x}=\frac{2 q_{w} \alpha}{k \bar{u} R}+\frac{8 \mu \bar{u}}{\rho c_{p} R^{2}} \quad(\mathrm{a} 3)
$$

Hence, Equation (a2) will read as

$$
2 \frac{u_{f d}}{k}\left(\frac{q_{w}}{\bar{u} R}+4 \frac{\mu \bar{u}}{R^{2}}\right)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+16 \frac{\mu}{k} \frac{\bar{u}^{2} r^{2}}{R^{4}}(a 4)
$$

Substituting for $u_{f d}$, we integrate this equation twice to determine the temperature profile (see next slide)

Viscous Heating -Soln - $2-\operatorname{L17}\left(\frac{16}{19}\right)$

The solution is
$T-T_{w}=2 \frac{\bar{u}}{k}\left(\frac{q_{w}}{\bar{u} R}+4 \frac{\mu \bar{u}}{R^{2}}\right)\left[\frac{r^{2}}{2}-\frac{r^{4}}{8 R^{2}}-\frac{3 R^{2}}{8}\right]-\frac{\mu \bar{u}^{2}}{k}\left(\frac{r^{4}}{R^{4}}-1\right)$
Hence, T_{b} evaluates to

$$
\begin{aligned}
T_{w}-T_{b} & =\frac{11}{48} \times \frac{2 \bar{u} R^{2}}{k}\left(\frac{q_{w}}{\bar{u} R}+4 \frac{\mu \bar{u}}{R^{2}}\right)-\frac{5}{6}\left(\frac{\mu \bar{u}^{2}}{k}\right) \\
& =\frac{11}{48}\left(\frac{q_{w} D}{k}\right)+\left(\frac{\mu \bar{u}^{2}}{k}\right)(\mathrm{a} 5)
\end{aligned}
$$

Dividing this equation by $q_{w} \mathrm{D} / \mathrm{k}$ gives the Nusselt number (see next slide)

Viscous Heating -Soln - $3-\operatorname{L17}\left(\frac{17}{19}\right)$

Hence, from Equation (a5)

$$
\begin{aligned}
N u & =\frac{q_{w}}{T_{w}-T_{b}} \frac{D}{k} \\
& =\left[\frac{11}{48}+\frac{\mu \bar{u}^{2}}{q_{w} D}\right]^{-1} \\
& =\frac{192}{44+192 B r} \\
B r & =\frac{\mu \bar{u}^{2}}{q_{w} D} \quad \text { Brinkman Number }
\end{aligned}
$$

If $\mathrm{Br}=0$, we recover $\mathrm{Nu}=4.364$.

Circular Tube - Axial conduction - L17($\left.\frac{18}{19}\right)$

 In liquid metals ($\operatorname{Pr} \ll 1$) and $T_{w}=$ const. boundary condition, effect of axial conduction becomes important. The governing equation is$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\partial^{2} T}{\partial x^{2}}=\frac{u_{f d}}{\alpha} \frac{d T}{d x}
$$

This 2D equation can be solved by analytical method or by Finite Difference method (FDM). The FDM solutions for different Peclet nos ($\mathrm{Pe}=\mathrm{Re} \times \mathrm{Pr}$) are

Pe	$N u_{f d}$	Pe	$N u_{f d}$	Pe	$N u_{f d}$
0.1	4.057	1.5	3.96	5.0	3.885
0.5	4.017	2.0	3.91	7.5	3.870
1.0	3.980	3.0	3.896	10.0	3.85

As $\mathrm{Pe} \rightarrow 0, \mathrm{Nu}=4.364$, and as $\mathrm{Pe} \rightarrow \infty, \mathrm{Nu}=3.667$.

Circular Tube - $q_{w}(\theta)-L 17\left(\frac{19}{19}\right)$

Frequently, heat flux variation is irregular around the circumference (due to radiant heating or wall thickness variation in thin-walled tubes) but axially constant. For this case,

$$
\begin{gathered}
\frac{u_{f d}}{\alpha} \frac{d T_{b}}{d x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}, \quad \frac{d T_{b}}{d x}=\frac{2 \bar{q}}{\rho c_{p} \bar{u} R} \\
\text { Bcs } \quad k\left(\frac{\partial T}{\partial r}\right)_{r=R}=q_{w}(\theta) \quad \text { and } \quad\left(\frac{\partial T}{\partial r}\right)_{r=0}=0 .
\end{gathered}
$$

This 2D equation can be solved by analytical method or by FDM. For $q_{w}(\theta)=\bar{q}(1+b \cos \theta)$, the solution is

$$
N u_{\theta}=\left\{\frac{q_{w}(\theta)}{T_{w}(\theta)-T_{b}}\right\}\left(\frac{2 R}{k}\right)=\frac{1+b \cos \theta}{11 / 48+0.5 b \cos \theta}
$$

where b is a parameter. $N u_{\theta}$ can assume both positive and negative values. For $\mathrm{b}=0, N u_{\theta}=48 / 11=4.364$.

