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Definition - L15( 1
15)

1 Fully-developed flow region occupies greater part of the
tube length in ducts of large L / ( D * Re ).

2 Fully-developed flow friction factors ffd provide the lower
bounds to the apparent fapp and local fl friction factors.

3 In laminar flows, ffd × Re = const for the given duct
4 ffd is evaluated from force balance

∆p × Ac = τw × P ×∆x

where τw is average wall shear stress. Thus,

ffd =
τw

ρ u2/2
=

1
2
|dp
dx
| Dh

ρ u2 Dh =
4× Ac

P

5 This is called the Fanning’s Friction Factor
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Circular Tube - 1 - L15( 2
15)

1 When flow is fully-developed, vr = vθ = ∂u/∂x =0
and dp / dx = const ( negative )

2 Hence, the axial momentum equation reduces to

1
r

∂

∂r
(r

∂u
∂r

) =
1
µ

d p
d x

= Constant (1)

with boundary conditions, u = 0 at r = R ( tube wall ) and
∂u/∂r = 0 at r = 0 ( symmetry ).

3 Integrating equation 1 twice with respect to r and using bcs,

u = −R2

4 µ

d p
d x

(1− r 2

R2
) (2)

4 Hence,

u =

∫ R
0 u r d r∫ R

0 r d r
= −R2

8 µ

d p
d x

or
u
u

= 2 (1− r 2

R2
) (3)
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Circular Tube - 2 - L15( 3
15)

Further, wall shear stress is evaluated as

τw = −µ (
∂u
∂r

)r=R = −R
2

d p
d x

=
4 µ u

R
(4)

Hence,

ffd =
τw

ρ u2/2
=

1
2
|d p
d x

| D

ρ u2 =
16
Re

(5)

Note that ffd × Re = 16 = const. Also, for a circular tube, Dh = D
and τw is circumferentially uniform.
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Annulus - 1 - L15( 4
15)

1 For the annulus, equation 1 again applies with No-slip ( u =
0 ) bcs at r = ri and r = ro.

2 Integrating twice

u =
1
µ

d p
d x

r 2

4
+ C1 ln (r) + C2 (6)

C1 = −1
µ

d p
d x

r 2
m

2
C2 = −1

µ

d p
d x

[
r 2
o ln ri − r 2

i ln ro

2 ln (ri/ro)

]
(7)

u = −1
µ

d p
d x

[
r 2
o + r 2

i

8
− r 2

m

4

]
r 2
m =

r 2
i − r 2

o

2 ln (ri/ro)
(8)

u
u

= 2
[

r 2
o − r 2 + 2 r 2

m ln (r/ro)

r 2
o + r 2

i − 2 r 2
m

]
(9)

where rm radius of maximum axial velocity or the location of
∂u/∂r = 0.
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Annulus - 2 - L15( 5
15)

Further, based on hydraulic diameter,

ffd × Re = (
1
2
|dp
dx
| Dh

ρ u2 )× (
ρ u Dh

µ
)

Hence, it can be shown that

ffd × Re =
− 16 (1− r ∗)2

2 r ∗m
2 − 1− r ∗2

where r ∗ = ri/ro, r ∗m = rm/ro and Dh = 2 (ro − ri).

Note that as r ∗ → 1, ffd × Re → 24.0 ( that is, flow between
parallel plates )
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Rectangular Ducts - L15( 6
15)

In the F D state, v = w = ∂u/∂x
=0. Hence, axial mom eqn
reduces to

∂2u∗

∂z2
+

∂2u∗

∂y2
= −1 (10)

u∗ = u/(−1
µ

d p
d x

) (11)

with bcs u∗ = 0 at z = ± a/2
and u∗ = 0 at y = ± b/2

RECTANGULAR DUCT

Y

Z

a

b

The Poisson’s eqn can be
solved by employing double
Fourier series with the method
of undetermined coefficients.
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Method of Solution - L15( 7
15)

In the most general case, both sides of the Poisson’s equation
are multiplied by F1(z)× F2(y) where

F1(z) = Am cos(
m π z

a
) + Bm sin(

m π z
a

)

F2(y) = Cn cos(
n π y

b
) + Dn sin(

n π y
b

)

But, in the present case, BCs require that terms containing
SINE functions vanish. Hence,

u∗ =
∑∞

m=1,3,5

∑∞
n=1,3,5 Cmn F (y , z)

where
F (y , z) = cos(

m π z
a

) cos(
n π y

b
)

() February 20, 2011 9 / 17



Solution Procedure - L15( 8
15)

∫ + a
2

− a
2

∫ + b
2

− b
2

(
∂2u∗

∂z2
+

∂2u∗

∂y2
)F (y , z)dy dz = −

∫ + a
2

− a
2

∫ + b
2

− b
2

F (y , z)dy dz

Integration by parts gives

LHS = −π2 (
m2

a2
+

n2

b2
)

∫ + a
2

− a
2

∫ + b
2

− b
2

u∗ F (y , z) dy dz

RHS = − 4ab
m n π2

(−1)( m+n
2 −1)

Substitute for u∗ and equate LHS = RHS to obtain Cmn
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Determination of Cmn and u∗ - L15( 9
15)

Cmn =
4ab

m n π2 (−1)( m+n
2 −1)

π2 (m2

a2 + n2

b2 )
∫ + a

2
− a

2

∫ + b
2

− b
2

F 2(y , z) dy∗dz∗

=
16

m n π4
(
m2

a2
+

n2

b2
)−1 (−1)( m+n

2 −1)

Hence, u∗ =
∑∞

m=1,3,5

∑∞
n=1,3,5 Cmn F (y , z)

and average velocity is given by

u∗ =
64
π6

b2
∞∑

m=1,3,5

∞∑
n=1,3,5

{
(mn)2 (γ2 m2 + n2)

}−1
γ =

b
a
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Final Solution - L15( 10
15)

u∗

u∗
=

π2

4

[∑∞
m,n=1,3,5

{
mn (γ2 m2 + n2)

}−1
(−1)( m+n

2 −1) F (y , z)∑∞
m,n=1,3,5 {(mn)2 (γ2 m2 + n2)}−1

]

ffd Re =
1
2

D2
h

u∗
=

π6

32
(1+γ)−2

 ∞∑
m,n=1,3,5

{
(mn)2 (γ2 m2 + n2)

}−1

−1

where Dh/b = 2/(1 + γ) and γ = b/a
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Results - Rect Ducts L15( 11
15)

γ umax/u ffd Re Remarks
1.0 2.08 14.261 Sq Duct
0.8 2.086 14.413
0.6 2.039 15.016
0.5 1.993 15.586
0.4 1.925 16.407
0.2 1.716 19.117
0.1 1.602 21.220
0.05 1.550 22.533
0.0 1.500 24.000 Parallel Pl

Calculations with m = n = 101.
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Annulus Sectors - L15( 12
15)

Governing Eqn

1
r

∂

∂r
(r

∂u
∂r

)+
1
r 2

∂2u
∂θ2

=
1
µ

d p
d x

= Const

Define
z = ln (r/ro) & u∗ = u/(− r2

o
µ

d p
d x )

Hence,

∂2u∗

∂z2
+

∂2u∗

∂θ2
= −e2 z

BCs: u∗ = 0 at zi = ln (ri/ro),
zo = 0, θ = ± θ0/2
Sectoral ducts are formed in
slots (eg. stampings ) or
smallest symm sector of an

SECTOR   DUCTS

r

r

r

0

0

i

θ0

θ0

internally finned annulus.
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Solution - 1 - L15( 13
15)

Solution Procedure is same as before.

u∗ =
∞∑

m=1,3,5

∞∑
n=1,2,3

Fmn cos (
m π θ

θ0
) sin (

n π z
zi

) (12)

Fmn = F1/F2

F1 =
2

π2 z2
i

(
n
m

) (−1)
m−1

2
{

1− (−1)n e2 zi
}

(13)

F2 = (1 +
n2 π2

4 z2
i

) (
n2

z2
i

+
m2

θ2
0

) (14)

() February 20, 2011 15 / 17



Solution - 2 - L15( 14
15)

u∗ =
∞∑

m=1,3,5

∞∑
n=1,2,3

F3

F4
(15)

F3 = −Fmn (
n
m

) (−1)
m−1

2
{

1− (−1)n e2 zi
}

(16)

F4 = zi
{

1− e2 zi
}

(1 +
n2 π2

4 z2
i

) (17)

ffd × Re = (
Dh

ro
)2/( 2 u∗ ) (18)

Dh

ro
=

2 θ0
{

1− e2 zi
}

θ0 {1 + ezi}+ 2 {1− ezi}
(19)
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Annular Sector Results - L15( 15
15)

r ∗ = ri/ro

θ0 ffd Re ffd Re ffd Re ffd Re
(r ∗ = 0.75) (r ∗ = 0.5) (r ∗ = 0.25) (r ∗ = 0.001)

180o 25.006 20.877 17.536 16.0856
90o 21.827 17.128 15.213 14.949
60o 19.568 15.481 14.906 14.308
30o 16.001 14.795 15.538 13.409
20o 14.821 15.570 16.069 13.025
10o 15.216 17.609 16.807 12.584
5o 17.602 19.363 17.274 12.341

In the next lecture, we shall consider ducts of complex
cross-section.
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