ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-14 LAMINAR INTERNAL FLOWS

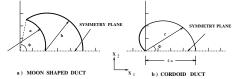
LECTURE-14 LAMINAR INTERNAL FLOWS

- Relevance
- Important Definitions
- Prediction of Developing Flow

Relevance - L14($\frac{1}{17}$)

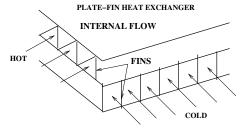
- In Heat Exchangers, it is important to have knowledge of pressure drop (or friction factor f) and heat transfer coefficient (or Nusselt Number Nu) on the *Tube Side* to facilitate their design
- Modern Heat exchangers employ ducts of both Circular and Non-Circular cross-section. Sometimes Curved Ducts are preferred or are necessitated to conserve space.
- Ouct passages with Internal Insertions such as Twisted tape or Coils are also popular. Optimally Internally Structured Surfaces such as rib-roughnesses, grooves and indentations are used for augmentation of Nu
- Solution of Transport Equations of mass, momentum and energy provide means for obtaining f and Nu. In simple ducts, analytical solutions are possible. In more complex ones, CFD solutions become necessary.

Non-circular Cross-Sections - L14($\frac{2}{17}$)

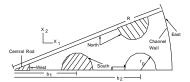


ANNULUS

ANNULAR SECTOR DUCT

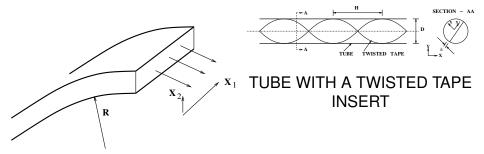


SQAURE AND TRIANGULAR CROSS-SECTION



Nuclear Rod Cluster

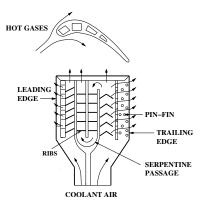
Curved Ducts - L14($\frac{3}{17}$)



SPIRAL PLATE HEAT EXCHANGER

4 6 1 1 4

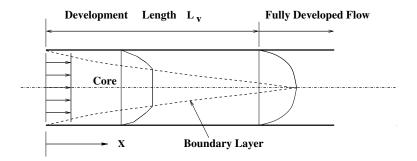
Internally Structured Surfaces L14($\frac{4}{17}$)



Non-circular ducts with Internal Ribs, Pin-Fins and Wall Perforations

Internally and Externally Spiral Groove Tube

F D and Developing Flows - L14 $(\frac{5}{17})$



- It is of interest to determine $L_v = F$ (Re)
- Analytical treatment difficult except in simple cases (example follows)
- Solution Fully-developed flow is identified with $\partial u/\partial x = 0$ and dp/dx = const.

Simple Developing Flow - L14($\frac{6}{17}$)

- Consider laminar flow between infinite parallel plates separated by distance 2b.
- In the entrance region, using BL approximations, the governing eqns and Boundary conditions are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(1)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{d p}{d x}(x) + v \frac{\partial^2 u}{\partial y^2}$$
(2)

$$u (0, y) = \overline{u} , \quad v(0, y) = 0 \quad (\text{inlet}) \quad \overline{u} = \frac{1}{b} \int_0^b u \, dy$$

$$\frac{\partial u}{\partial y}(x, b) = 0 , \quad v(x, b) = 0 \quad (\text{symmetry})$$

$$u (x, 0) = 0 , \quad v(x, 0) = 0 \quad (\text{plate wall}) \quad (3)$$

Dimensionless Eqns - L14($\frac{7}{17}$)

$$\frac{\partial u^{*}}{\partial x^{*}} + \frac{\partial v^{*}}{\partial y^{*}} = 0 \qquad (4)$$

$$Re\left[\frac{\partial (u^{*} u^{*})}{\partial x^{*}} + \frac{\partial (u^{*} v^{*})}{\partial y^{*}}\right] = -Re\frac{d p^{*}}{d x^{*}} + \frac{\partial^{2} u^{*}}{\partial y^{*^{2}}} \qquad (5)$$

$$u^{*} = \frac{u}{\overline{u}} v^{*} = \frac{v}{\overline{u}} \quad p^{*} = \frac{p}{\rho \overline{u}^{2}} \qquad (6)$$

$$x^{*} = \frac{x}{D_{h}} y^{*} = \frac{y}{D_{h}} \qquad (7)$$

$$Re = \frac{\overline{u} D_{h}}{v} \quad D_{h} = 4b \qquad (8)$$

Eqn 5 shows that pressure drop in the duct-entrance-length is caused by viscous friction as well as momentum change caused by changes in velocity profiles

Solution by Linearisation - L14($\frac{8}{17}$)

Analytical solutions are not possible because of the copupling involved in non-linear convection terms. Therefore, following Langhaar¹, let

$$\operatorname{Re}\left[\frac{\partial(u^*\ u^*)}{\partial x^*} + \frac{\partial(u^*\ v^*)}{\partial y^*}\right] = \beta^2(x^*)\ u^* \tag{9}$$

e Hence, the momentum eqn can be written as

$$\frac{\partial^2 u^*}{\partial y^{*^2}} - \beta^2 u^* = Re \frac{d p^*}{d x^*}$$
(10)

March 26, 2012

10/19

where $d p^*/d x^* = f_l$ the local Fanning Friction factor.

¹Langhaar H, *Steady Flow in the Transition Length of a Straight Tube*, J Appl Mech, vol 9, p 55-58, (1942)

Further Manipulations - I L14($\frac{9}{17}$)

To make further progress, Define

$$u^{'}=u^{*}+rac{Re}{eta^{2}}\,rac{d\,p^{*}}{d\,x^{*}}$$

Interpretent of the momentum eqn will read as

$$\frac{\partial^2 u'}{\partial y^{*^2}} - \beta^2 u' = 0 \tag{11}$$

with $u^* = 0$ at $y^* = 0$ and $\partial u' / \partial y^* = 0$ at $y^* = 1/4$ This is the familiar *Fin-Equation* with a solution

$$u' = C_{1} \exp (\beta y^{*}) + C_{2} \exp (-\beta y^{*})$$
(12)
$$C_{1} = \frac{(Re/\beta^{2}) (d p^{*} / d x^{*})}{1 + exp (\beta/2)} C_{2} = C_{1} exp (\beta/2)$$
(13)

Evaluation of $d p^*/d x^* L14(\frac{10}{17})$

1 To evaluate $d p^*/d x^*$, we use definition of \overline{u} . This gives

$$\int_{0}^{1/4} u^{*} dy^{*} = \int_{0}^{1/4} \left(u^{'} - \frac{Re}{\beta^{2}} \frac{d p^{*}}{d x^{*}} \right) dy^{*} = \frac{1}{4}$$

2 Substitution for u' gives

$$Re \frac{d p^{*}}{d x^{*}} = f_{l} Re = \beta \left[4 C_{1} \left\{ \exp \left(\beta/2 \right) - 1 \right\} - 1 \right]$$
(14)

Centerline Velocity u_c - L14($\frac{11}{17}$)

Consider equation 10 again. Then at $y^* = 1/4$ (or at centerline)

$$(\frac{\partial^2 u^*}{\partial y^{*^2}})_{1/4} - \beta^2 u_c^* = Re \frac{d p^*}{d x^*}$$
(15)

where, it can be shown that $(\partial^2 u^* / \partial y^{*^2})_{1/4} = 2 C_1 \beta^2 \exp(\beta/4)$ and hence,

$$u_{c}^{*} = -C_{1} \left[exp(\beta/4) - 1 \right]^{2}$$
(16)

Final Solution $\beta \sim x L14(\frac{12}{17})$

Integrating equation 5 and noting that $u_{y^*=0}^* = v_{y^*=1/4}^* = 0$ gives

$$Re \frac{d}{d x^*} \int_0^{1/4} (u^* u^*) d y^* = -\left(\frac{Re}{4} \frac{d p^*}{d x^*} + \frac{\partial u^*}{\partial y^*} \right|_{y^*=0} (17)$$

Substitution gives

$$Re \frac{d F_1(\beta)}{d x^*} = F_2(\beta) \text{ or } x^* = Re \int_{F_1(x^*=x^*)}^{F_1(x^*=x^*)} \frac{1}{F_2} d F_1$$
 (18)

where
$$F_1 = C_1^2 [I_1 + I_2 - I_3]$$

 $I_1 = (\exp(\beta/2) + 1)^2/4.0 \ I_2 = (\exp\beta + \beta \exp(\beta/2) - 1)/(2\beta)$
 $I_3 = 2 (\exp(\beta) - 1)/\beta$
 $F_2 = -\beta C_1 [\beta \{1 + \exp(\beta/2)\} + 1 - \exp(\beta/2)]$

Evaluation of the Integral - L14($\frac{13}{17}$)

Objective: To evaluate

$$x^* = Re \int_{F_1 (x^*=0)}^{F_1 (x^*=x^*)} \frac{1}{F_2} dF_1$$

- We assign different *numerical values* to β and generate functions F₁(β) and F₂(β)
- Then, integration is performed by Trapezoidal rule
- Were, 0 < β < 60 were chosen in steps of 1 and found to be sufficient. Note that as β → ∞, x* → 0 and as β → 0, x* → ∞
- Solutions u_c^* and f_l Re are also evaluated
- **(**) Solutions for select values of β are shown on the next slide

Tabulated Solution - L14($\frac{14}{17}$)

β	<i>C</i> ₁	(x/Dh) / Re	U _c *	$f_l \times Re$
60.0	-1.002e-13	4.60e-6	1.071	1928
50.0	-1.509e-11	6.82e-6	1.0869	1358
40.0	-2.290e-9	1.178e-5	1.111	888
30.0	-3.529e-7	2.50e-5	1.1525	519
20.0	-5.670e-5	7.74e-5	1.233	250
10.0	-0.011	4.26e-4	1.3825	82.59
5.0	-1.19	2.03e-3	1.486	29.38
1.0	-18.57	5.08e-3	1.498	24.60
0.75	-35.24	5.51e-3	1.4991	24.33
0.50	-84.58	6.153e-3	1.4996	24.15
0.30	-247.26	7.01e-3	1.49986	24.053
0.10	-2340.6	1.02024e-2	1.49998	24.006
0.0		∞	1.50	24.0

э

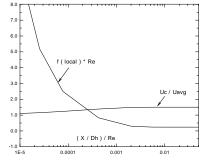
3 > 4 3

Comments on the Solution - L14($\frac{15}{17}$)

- Development length is $(L_v/D_h)/Re \simeq 0.01$
- Fully Developed Friction Factor is (*f Re*)_{fd} = 24.0
- Fully Developed Centerline velocity is $u_c/\overline{u} = 1.5$
- These are well-known results from UG Texts

More results on L_v on the next slide Sometimes Apparent Friction Factor is evaluated as

$$f_{app} = -\frac{1}{2} \left(\frac{p_x - p_{x=0}}{x} \right) \frac{D_h}{\rho \, \overline{u}^2} = \frac{1}{x} \int_0^x f_l \, dx \tag{19}$$



Flow Development Lengths - L14($\frac{16}{17}$)

Duct	Geometry	Value of	$L_v/D_h/Re_{D_h}$
Cross-section	parameter	parameter	
Circular			0.05
		0.05	0.01944
	Radius	0.10	0.01792
Annulus	ratio	0.25	0.01679
	r_i/r_o	0.50	0.01968
		1.0	0.01
		0.0	0.01
Rectangular	Ratio of	0.125	0.0227
	sides	0.25	0.0427
		0.50	0.066
	(b/a)	0.75	0.0736
		1.0	0.0752
Semi-circle			0.0622

э

The Sec. 74

Some References - L14(¹⁷/₁₇)

- Sparrow E M and Lin S H Flow development Lengths in the Hydrodynamic Entrance region of Tubes and Ducts, Physic of Fluids, vol7(1), p 338 (1964)
- Han L S Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts, Trans ASME, Jnl Appl Mech, p 403 (1960)
- Lundgren T S, Sparrow E M and Starr J B Pressure Drop due to the Entrance Region in Ducts of Arbitrary Cross-Section Trans ASME, Jnl of Basic Engg, p 620 (1964)
- Heaton H S, Reynolds W C and Kays W M Heat Transfer in Annular Passages, Simultaneous Development of Velocity and Temprature Fields in Laminar Flow, Int Jnl Heat Mass Transfer, vol 7, p 763, (1964)

Image: Image: