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Relevance - L14( 1
17)

1 In Heat Exchangers, it is important to have knowledge of
pressure drop ( or friction factor f ) and heat transfer
coefficient ( or Nusselt Number Nu ) on the Tube Side to
facilitate their design

2 Modern Heat exchangers employ ducts of both Circular and
Non-Circular cross-section . Sometimes Curved Ducts are
preferred or are necessitated to conserve space.

3 Duct passages with Internal Insertions such as Twisted tape
or Coils are also popular. Optimally Internally Structured
Surfaces such as rib-roughnesses, grooves and
indentations are used for augmentation of Nu

4 Solution of Transport Equations of mass, momentum and
energy provide means for obtaining f and Nu. In simple
ducts, analytical solutions are possible. In more complex
ones, CFD solutions become necessary.
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Non-circular Cross-Sections - L14( 2
17)
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Curved Ducts - L14( 3
17)
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Internally Structured Surfaces L14( 4
17)
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F D and Developing Flows - L14( 5
17)

L v

X

Fully Developed Flow
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Core
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1 It is of interest to determine Lv = F ( Re )
2 Analytical treatment difficult except in simple cases

( example follows )
3 Fully-developed flow is identified with ∂u/∂x = 0 and dp/dx

= const.
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Simple Developing Flow - L14( 6
17)

1 Consider laminar flow between infinite parallel plates
separated by distance 2b.

2 In the entrance region , using BL approximations, the
governing eqns and Boundary conditions are

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

d p
d x

(x) + ν
∂2u
∂y2 (2)

u (0, y) = u , v(0, y) = 0 (inlet) u =
1
b

∫ b

0
u dy

∂u
∂y

(x ,b) = 0 , v (x ,b) = 0 (symmetry)

u (x ,0) = 0 , v(x ,0) = 0 (plate wall) (3)
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Dimensionless Eqns - L14( 7
17)

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0 (4)

Re
[
∂(u∗ u∗)

∂x∗ +
∂(u∗ v∗)

∂y∗

]
= −Re

d p∗

d x∗ +
∂2u∗

∂y∗2 (5)

u∗ =
u
u

v∗ =
v
u

p∗ =
p
ρ u2 (6)

x∗ =
x
Dh

y∗ =
y
Dh

(7)

Re =
u Dh

ν
Dh = 4b (8)

Eqn 5 shows that pressure drop in the duct-entrance-length is
caused by viscous friction as well as momentum change caused
by changes in velocity profiles
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Solution by Linearisation - L14( 8
17)

1 Analytical solutions are not possible because of the
copupling involved in non-linear convection terms.
Therefore, following Langhaar1, let

Re
[
∂(u∗ u∗)

∂x∗ +
∂(u∗ v∗)

∂y∗

]
= β2(x∗) u∗ (9)

2 Hence, the momentum eqn can be written as

∂2u∗

∂y∗2 − β2 u∗ = Re
d p∗

d x∗ (10)

where d p∗/d x∗ = fl the local Fanning Friction factor.

1Langhaar H , Steady Flow in the Transition Length of a Straight Tube, J
Appl Mech, vol 9, p 55-58, ( 1942 )
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Further Manipulations - I L14( 9
17)

1 To make further progress, Define

u
′
= u∗ +

Re
β2

d p∗

d x∗

2 Then, the momentum eqn will read as

∂2u′

∂y∗2 − β2 u
′
= 0 (11)

with u∗ = 0 at y∗ = 0 and ∂u′/∂y∗ = 0 at y∗ = 1/4
3 This is the familiar Fin-Equation with a solution

u
′

= C1 exp (β y∗) + C2 exp (−β y∗) (12)

C1 =
( Re/β2) (d p∗ / d x∗)

1 + exp (β/2)
C2 = C1 exp (β/2) (13)
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Evaluation of d p∗/d x∗ L14(10
17)

1 To evaluate d p∗/d x∗, we use definition of u. This gives∫ 1/4

0
u∗ dy∗ =

∫ 1/4

0
(u
′ − Re

β2

d p∗

d x∗ ) dy∗ =
1
4

2 Substitution for u′ gives

Re
d p∗

d x∗ = fl Re = β [4 C1 {exp (β/2)− 1} − 1] (14)
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Centerline Velocity uc - L14(11
17)

Consider equation 10 again. Then at y∗ = 1/4 ( or at centerline )

(
∂2u∗

∂y∗2 )1/4 − β2 u∗
c = Re

d p∗

d x∗ (15)

where, it can be shown that (∂2u∗/∂y∗2
)1/4 = 2 C1 β

2 exp( β/4 )
and hence,

u∗
c = −C1 [exp( β/4 )− 1]2 (16)
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Final Solution β ∼ x L14(12
17)

1 Integrating equation 5 and noting that u∗
y∗=0 = v∗

y∗=1/4 = 0
gives

Re
d

d x∗

∫ 1/4

0
(u∗ u∗) d y∗ = −(Re

4
d p∗

d x∗ +
∂u∗

∂y∗ |y∗=0) (17)

2 Substitution gives

Re
d F1(β)

d x∗ = F2 (β) or x∗ = Re
∫ F1 (x∗=x∗)

F1 (x∗=0)

1
F2

d F1 (18)

where F1 = C2
1 [ I1 + I2 − I3 ]

I1 = (exp (β/2)+1)2/4.0 I2 = (expβ+β exp (β/2)−1)/(2β)
I3 = 2 (exp(β)− 1)/β
F2 = −β C1 [ β {1 + exp (β/2)}+ 1− exp (β/2) ]
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Evaluation of the Integral - L14(13
17)

1 Objective: To evaluate

x∗ = Re
∫ F1 (x∗=x∗)

F1 (x∗=0)

1
F2

d F1

2 We assign different numerical values to β and generate
functions F1(β) and F2(β)

3 Then, integration is performed by Trapezoidal rule
4 Here, 0 < β < 60 were chosen in steps of 1 and found to be

sufficient. Note that as β →∞, x∗ → 0 and as β → 0,
x∗ →∞

5 For each β, solutions u∗
c and fl Re are also evaluated

6 Solutions for select values of β are shown on the next slide
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Tabulated Solution - L14(14
17)

β C1 (x/Dh) / Re u∗
c fl × Re

60.0 -1.002e-13 4.60e-6 1.071 1928
50.0 -1.509e-11 6.82e-6 1.0869 1358
40.0 -2.290e-9 1.178e-5 1.111 888
30.0 -3.529e-7 2.50e-5 1.1525 519
20.0 -5.670e-5 7.74e-5 1.233 250
10.0 -0.011 4.26e-4 1.3825 82.59
5.0 -1.19 2.03e-3 1.486 29.38
1.0 -18.57 5.08e-3 1.498 24.60

0.75 -35.24 5.51e-3 1.4991 24.33
0.50 -84.58 6.153e-3 1.4996 24.15
0.30 -247.26 7.01e-3 1.49986 24.053
0.10 -2340.6 1.02024e-2 1.49998 24.006
0.0 ∞ 1.50 24.0
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Comments on the Solution - L14(15
17)

1 Development length is
(Lv/Dh)/Re ' 0.01

2 Fully Developed Friction
Factor is (f Re)fd = 24.0

3 Fully Developed Centerline
velocity is uc/u = 1.5

4 These are well-known
results from UG Texts

5 More results on Lv on the
next slide
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Sometimes Apparent Friction Factor is evaluated as

fapp = −1
2
(
px − px=0

x
)

Dh

ρ u2 =
1
x

∫ x

0
fl dx (19)
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Flow Development Lengths - L14(16
17)

Duct Geometry Value of Lv/Dh/ReDh

Cross-section parameter parameter
Circular 0.05

0.05 0.01944
Radius 0.10 0.01792

Annulus ratio 0.25 0.01679
ri/ro 0.50 0.01968

1.0 0.01
0.0 0.01

Rectangular Ratio of 0.125 0.0227
sides 0.25 0.0427

0.50 0.066
( b / a ) 0.75 0.0736

1.0 0.0752
Semi-circle 0.0622

() March 26, 2012 18 / 19



Some References - L14(17
17)

1 Sparrow E M and Lin S H Flow development Lengths in
the Hydrodynamic Entrance region of Tubes and Ducts,
Physic of Fluids, vol7(1), p 338 (1964 )

2 Han L S Hydrodynamic Entrance Lengths for
Incompressible Laminar Flow in Rectangular Ducts, Trans
ASME, Jnl Appl Mech, p 403 ( 1960 )

3 Lundgren T S, Sparrow E M and Starr J B Pressure Drop
due to the Entrance Region in Ducts of Arbitrary
Cross-Section Trans ASME, Jnl of Basic Engg, p 620 (
1964 )

4 Heaton H S, Reynolds W C and Kays W M Heat Transfer
in Annular Passages, Simultaneous Development of
Velocity and Temprature Fields in Laminar Flow, Int Jnl
Heat Mass Transfer, vol 7, p 763, ( 1964 )

() March 26, 2012 19 / 19


