ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India

LECTURE-13 SUPERPOSITION THEORY & APPLICATION

LECTURE-13 SUPERPOSITION THEORY & APPLICATION

- Develop the Theory
- Obtain Solutions with Arbitrary Variation of T_w (x) using unheated starting length (x_0) solution for a flat plate

$$St_{x} = \frac{3\alpha}{2\Delta U_{\infty}} = 0.331 \ Re_{x}^{-0.5} \ Pr^{-0.66} \ \left[1 - \left(\frac{x_{0}}{x}\right)^{0.75}\right]^{-0.33}$$

Theory of Superposition - I - L13($\frac{1}{9}$)

- For constant fluid properties, The energy equation is a linear, homogeneous equation so that a sum of solutions is also a solution. This property can be exploited to derive St_x results for arbitrary variation of $T_w(x)$ knowing the solution for $T_w = \text{const.}$
- 2 Define $\theta(x, y) = (T_w T)/(T_w T_\infty)$
- Thus, let $\theta(x, y, x_0)$ be the unheated starting length solution for $T_w = \text{const for } x \ge x_0$. Then $T - T_{\infty} = [1 - \theta(x, y, x_0)] (T_w - T_{\infty})$
- The response of T to infinitisimal change $d T_w$ then is: $d (T - T_\infty) = [1 - \theta(x, y, x_0)] d (T_w - T_\infty)$
- Similarly, the response to discrete change ΔT_w is: $\Delta (T - T_\infty) = [1 - \theta(x, y, x_0)] \Delta (T_w - T_\infty)$

Theory of Superposition - II - L13($\frac{2}{9}$)

Therefore, for continuous and discrete changes, one may write the total solution as:

$$T - T_{\infty} = \int_{x_0=0}^{x_0=x} [1 - \theta(x, y, x_0)] d T_w + \sum_{i=1}^{i=l} [1 - \theta(x, y, x_0)] \Delta (T_w - T_{\infty})_i$$

3 But, for continuous change $d T_w = (d T_w/d x_0) d x_0$. Hence,

$$T - T_{\infty} = \int_{x_0=0}^{x_0=x} [1 - \theta(x, y, x_0)] \frac{d T_w}{d x_0} d x_0 + \sum_{i=1}^{i=i} [1 - \theta(x, y, x_0)] \Delta (T_w - T_{\infty})_i$$

Theory of Superposition - III - L13($\frac{3}{9}$)

• Now,
$$q_{w,x} = -k \partial T / \partial y|_{y=0}$$
. Hence,
 $h(x, x_0) = q_{w,x} / (T_w - T_\infty) = -k \partial \theta / \partial y|_{y=0}$

$$q_{w,x} = \int_0^x h(x,x_0) \frac{d T_w}{d x_0} d x_0 + \sum_{i=1}^{i=1} h(x,x_0) \Delta (T_w - T_\infty)_i$$

where for Flat Plate and $Pr \ge 1$, $h(x, x_0)$ is evaluated from

$$St_x = rac{h(x,x_0)}{
ho \ C
ho \ U_\infty} = 0.331 \ Re_x^{-0.5} \ Pr^{-0.66} \ \left[1 - (rac{x_0}{x})^{0.75}
ight]^{-0.33}$$

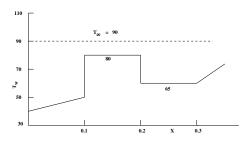
and $Nu_x = St_x Re_x Pr$

An Application L13($\frac{4}{9}$)

Consider flat plate boundary layer in which the surface temperature varies as follows. $0 < x < x_1, T_w = 40 + 100 x.$ $x_1 < x < x_2, T_w = 80.$ $x_2 < x < x_3, T_w = 65$ $x > x_3, T_w = 65 + 200 (x - x_3).$

 $x_1 = 0.1 \text{ m}, x_2 = 0.2 \text{ m}, x_3 = 0.3 \text{ m}.$

Determine $q_{w,x}$ and Nu_x



$$T_{\infty} = 90, U_{\infty} = 7.5 \text{ m/s}$$

 $\nu = 18.97 \times 10^{-6} m^2/s,$
 $k = 0.029 \text{ W/m-K}$
 $Pr = 0.696.$

Solution-I - L13($\frac{5}{9}$)

$$\underline{For \ 0 < x < x_1} - \Delta T_{wo} = 40 - 90 = -50$$

$$q_{w,x} = A \left[\int_0^x ((1 - \frac{x_0}{x})^{0.75})^{-0.33} 100 \ dx_0 + \Delta T_{wo} \right] \qquad (1)$$

$$\underline{For \ x_1 < x < x_2} - \Delta T_{w1} = 80 - 50 = 30$$

$$q_{w,x} = A \left[\int_0^{x_1} ((1 - \frac{x_0}{x})^{0.75})^{-0.33} 100 \, d \, x_0 + \Delta T_{w0} \right] \\ + A \left[((1 - \frac{x_1}{x})^{0.75})^{-0.33} \Delta T_{w1} \right]$$
(2)

where $A = 0.3313 \frac{k}{x} Re_x^{0.5} Pr^{0.33}$.

Solution-II - L13($\frac{6}{9}$)

For
$$x_2 < x < x_3$$
 - $\Delta T_{w2} = 65 - 80 = -15$

$$\begin{aligned} q_{w,x} &= A \left[\int_0^{x_1} (1 - \frac{x_0}{x})^{0.75} \,)^{-0.33} \, 100 \, d \, x_0 + \Delta T_{w0} \right] \\ &+ A \left[(\, (1 - \frac{x_1}{x_2})^{0.75} \,)^{-0.33} \, \Delta T_{w1} \right] \\ &+ A \left[(\, (1 - \frac{x_2}{x})^{0.75} \,)^{-0.33} \, \Delta T_{w2} \right] \end{aligned}$$

where $A = 0.3313 \frac{k}{x} Re_x^{0.5} Pr^{0.33}$.

< E

(3)

Solution-III - L13($\frac{7}{9}$)

For $x_3 < x$

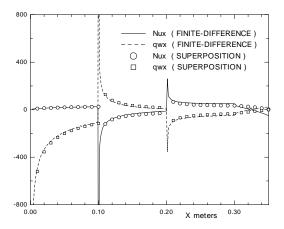
$$q_{w,x} = A \left[\int_{0}^{x_{1}} \left(\left(1 - \frac{x_{0}}{x}\right)^{0.75}\right)^{-0.33} 100 \, d \, x_{0} + \Delta T_{w0} \right] \\ + A \left[\left(\left(1 - \frac{x_{1}}{x_{2}}\right)^{0.75}\right)^{-0.33} \Delta T_{w1} + \left(\left(1 - \frac{x_{2}}{x_{3}}\right)^{0.75}\right)^{-0.33} \Delta T_{w2} \right] \\ + A \left[\int_{x_{3}}^{x} \left(1 - \frac{x_{3}}{x}\right)^{0.75}\right)^{-0.33} 200 \, d \, x_{3} \right]$$
(4)

where $A = 0.3313 \frac{k}{x} Re_x^{0.5} Pr^{0.33}$. Note that

$$\int_0^x \left(\left(1 - \frac{x_0}{x}\right)^{0.75} \right)^{-0.33} d\, x_0 = \frac{4}{3} \,\beta \left(\frac{2}{3}, \frac{4}{3}\right) x = 1.612 \, x$$

< ロ > < 同 > < 回 > < 回 >

Final Solution L13($\frac{8}{9}$)



Remarkably good Agreement with FD Solutions.

()

Discussion L13($\frac{9}{9}$)

- Notice the change in the sign of $q_{w,x}$ and Nu_x although over the entire length $T_{\infty} > T_w$.
- 2 Negative $q_{w,x}$ implies heat transfer to the wall and vice versa
- Problems of this type are important in electronics cooling such as the Printed Circuit Boards.
- Solutions of this type can also be developed for flows with pressure gradient. But, the theory is more involved¹

¹Spalding D. B. *Heat transfer from Surfaces of non-uniform Temperature* Jnl of Fluid Mechanics, vol. 4, p 22-32 (1957)