ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-12 INTEGRAL SOLNS TO LAMINAR TEMP BL

LECTURE-12 INTEGRAL SOLNS TO LAMINAR TEMP BL

$$
\begin{align*}
& \frac{d \Delta_{2}}{d x}+\Delta_{2}\left[\frac{1}{\left(T_{w}-T_{\infty}\right)} \frac{d}{d x}\left(T_{w}-T_{\infty}\right)+\frac{1}{U_{\infty}} \frac{d U_{\infty}}{d x}\right] \\
& \quad=S t_{x}+\frac{V_{w}}{U_{\infty}}+2 E c_{x} \frac{\nu}{U_{\infty}^{3}} \int_{0}^{1}\left(\frac{\partial u}{\partial y}\right)^{2} d y \tag{1}
\end{align*}
$$

(1) Solution Procedure
(2) Solutions with Effects of Pressure Gradient and Sucrion/Blowing
(3) Application to Flow over a Cylinder

Assumed Temp Profile - L12($\frac{1}{14}$)

$$
\begin{array}{rlrl}
\text { Let } T & =a+b \eta_{T}+c \eta_{T}^{2}+d \eta_{T}^{3}+e \eta_{T}^{4} \quad \eta_{T} & =\frac{y}{\Delta} \\
\text { At } \mathrm{y} & =0(\mathrm{Wall}) & \text { At } \mathrm{y}=\Delta & (\text { Edge of BL) } \\
T & =T_{w} & \frac{\partial T}{\partial y} & =0 \\
\alpha \frac{\partial^{2} T}{\partial y^{2}} & =-\frac{\nu}{C p}\left(\frac{\partial u}{\partial y}\right)^{2} & \frac{\partial^{2} T}{\partial y^{2}} & =0
\end{array}
$$

2nd BC derived from PDE
3rd BC ensures assymptotic behaviour as $y \rightarrow \delta$
Five BCs give 5 coefficients a, b, c, d and e

Derived Temp Profile - L12($\frac{2}{14}$)

$$
\begin{align*}
\frac{T-T_{\infty}}{T_{w}-T_{\infty}} & =1-2 \eta_{T}+2 \eta_{T}^{3}-\eta_{T}^{4}+A\left(\eta_{T}-3 \eta_{T}^{2}+3 \eta_{T}^{3}-\eta_{T}^{4} \gamma 8\right) \\
A & =\frac{V_{w}^{*}(\Delta / \delta)+E c(\Delta / \delta)^{2}(\lambda+12)^{2} /\left(V_{w}^{*}+6\right)^{2}}{3 / \operatorname{Pr}+V_{w}^{*}(\Delta / \delta) / 2} \tag{9}\\
\frac{u}{U_{\infty}} & =\left(\frac{6}{6+V_{w}^{*}}\right)\left(F_{1}+V_{w}^{*} F_{2}+\lambda F_{3}\right) \quad V_{w}^{*}=\frac{V_{w} \delta}{\nu} \tag{10}\\
F_{1} & =2 \eta-2 \eta^{3}+\eta^{4} \quad F_{2}=\frac{1}{6}\left(6 \eta^{2}-8 \eta^{3}+3 \eta^{4}\right) \tag{11}\\
F_{3} & =\frac{1}{6}\left(\eta-3 \eta^{2}+3 \eta^{3}-\eta^{4}\right) \quad \lambda=\frac{\delta^{2}}{\nu} \frac{d U_{\infty}}{d x} \tag{12}
\end{align*}
$$

Evaluation of $\Delta_{2}-\operatorname{L12}\left(\frac{3}{14}\right)$

To make further progress, we need to evaluate Δ_{2}

$$
\begin{equation*}
\Delta_{2}=\int_{0}^{1} \frac{u}{U_{\infty}}\left(\frac{T-T_{\infty}}{T_{w}-T_{\infty}}\right) d y \tag{13}
\end{equation*}
$$

where $\mathrm{I}=\Delta$ or δ which ever is greater.
(1) This evaluation becomes extermely laborious
(2) Hence, usually simplifications are made
(3) For liquid metals, $\operatorname{Pr} \ll 1,\left(u / U_{\infty}\right)=1$. Also, $\Delta \gg \delta$ and hence, $A \rightarrow 2$.
(9) For liquids, $V_{w}^{*}=0$ (not of interest). Hence,

$$
A \rightarrow\left(\frac{\operatorname{Pr} E c}{3}\right)\left(\frac{\lambda+12}{6}\right)^{2}\left(\frac{\Delta}{\delta}\right)^{2}
$$

(6) For Oils, $\operatorname{Pr} \gg 1, \Delta \ll \delta$. Hence, $\mathrm{A} \rightarrow 0$

Simple Case - L12($\frac{4}{14}$)

(1) Consider a simple case of a Flat-Plate Boundary Layer with $V_{w}=0, U_{\infty}=$ const, Ec = 0
(2) $\operatorname{Pr}>1$. Hence, $\delta>\Delta$ $T_{w}=$ Const for $x>x_{0}$

(3) Then, the governing eqns are:

$$
\begin{aligned}
\frac{d \delta_{2}}{d x} & =\frac{C_{f, x}}{2}=\frac{\tau_{w}}{\rho U_{\infty}^{2}} \\
\frac{d \Delta_{2}}{d x} & =S t_{x}=\frac{h_{x}}{\rho C p U_{\infty}}
\end{aligned}
$$

Assume simple profiles:

Flat Plate Vel Solns L12($\frac{5}{14}$)

$$
\frac{\delta_{2}}{\delta}=\frac{39}{280} \quad C_{f, x}=\frac{3}{2} \frac{\nu}{\delta U_{\infty}}
$$

Substitution in Mom Eqn gives

$$
\delta \frac{d \delta}{d x}=\frac{140}{13} \frac{\nu}{U_{\infty}}
$$

Integration gives $\left(\delta_{x=0}=0\right)$

$$
\begin{aligned}
\delta & =\sqrt{\frac{280}{13} \frac{\nu x}{U_{\infty}}}=4.64 \sqrt{\frac{\nu x}{U_{\infty}}} \\
C_{f, x} & =0.646 \mathrm{Re}_{x}^{-0.5}
\end{aligned}
$$

Exact Similarty Soln: $C_{f, x}=0.664 R e_{x}^{-0.5}$

Flat Plate Soln Pr >1 L12($\frac{6}{14}$)

$$
\frac{\Delta_{2}}{\Delta}=\frac{3}{20} R-\frac{3}{280} R^{3} \quad S t_{x}=\frac{3}{2} \frac{\alpha}{\Delta U_{\infty}} \quad R=\frac{\Delta}{\delta}<1
$$

Substitution in Energy Eqn

$$
\begin{aligned}
\frac{d \Delta_{2}}{d x} & =\frac{3 \delta}{10}\left[R-\frac{R^{3}}{7}\right] \frac{d R}{d x}+\frac{3}{20}\left[R^{2}-\frac{R^{4}}{14}\right] \frac{d \delta}{d x}=S t_{x} \\
& \simeq \frac{3 \delta R}{10} \frac{d R}{d x}+\frac{3 R^{2}}{20} \frac{d \delta}{d x}=\frac{3}{2} \frac{\alpha}{\Delta U_{\infty}}
\end{aligned}
$$

Substituting for δ and $d \delta / d x$ gives

$$
R^{3}+4 R^{2} x \frac{d R}{d x}=\frac{13}{14 \operatorname{Pr}} \text { or } \frac{4}{3} x^{0.25} \frac{d}{d x}\left(x^{0.75} R^{3}\right)=\frac{13}{14 \operatorname{Pr}}
$$

Flat Plate Soln Pr > 1 - Contd L12 $\left(\frac{7}{14}\right)$

Integrating and noting that $R=0$ at $x=x_{0}$,

$$
R^{3}=\left(\frac{\Delta}{\delta}\right)^{3}=\frac{13}{14 \operatorname{Pr}}\left[1-\left(\frac{x_{0}}{x}\right)^{0.75}\right]
$$

Therefore,
$S t_{x}=\frac{3 \alpha}{2 \Delta U_{\infty}}=\frac{3 \alpha}{2 R \delta U_{\infty}}=0.331 \operatorname{Re}_{x}^{-0.5} \operatorname{Pr}^{-0.66}\left[1-\left(\frac{x_{0}}{x}\right)^{0.75}\right]^{-0.33}$
For $X_{0}=0$, Similarity Soln: $S_{x}=0.33 \operatorname{Re}_{x}^{-0.5} \operatorname{Pr}^{-0.66}$
We shall make use of this equation in a later development called Superposition Theory (see next lecture)

Effect of $\mathrm{Pr} \mathrm{Gr}-\mathrm{L} 12\left(\frac{8}{14}\right)$

$V_{w}=\mathrm{Ec}=0, T_{w}=\mathrm{const}$

$$
\frac{d \Delta_{2}}{d x}+\frac{\Delta_{2}}{U_{\infty}} \frac{d U_{\infty}}{d x}=S t_{x}=\frac{h_{x}}{\rho C p U_{\infty}}
$$

Define Conduction Thickness $\Delta_{4} \equiv k / h_{x} \propto \Delta_{2}$. Hence, $S t_{x}=\alpha /\left(\Delta_{4} U_{\infty}\right)$

Like momentum thickness δ_{2}, Postulate ${ }^{1}$ a relationship

$$
\frac{d \Delta_{4}}{d x}=F\left(U_{\infty}, \frac{d U_{\infty}}{d x}, \nu, \Delta_{4}, \operatorname{Pr}\right)
$$

${ }^{1}$ Eckert E. R. G. and Weise W. Messung der Temperaturverteilung auf der Oberfläche schnell strömter Kröper, Forschg. Ing.-Wes., vol. 13, p 246-254, 1942

Dimensional Analysis - L12 ($\frac{9}{14}$)

(1) let X, Y and Z represent characteristic length dimensions in x, y and z directions. Then, each parameter has following dimensions:

$$
\left(\Delta_{4} \rightarrow Y\right),\left(U_{\infty} \rightarrow \frac{X}{t}\right),\left(\frac{d U_{\infty}}{d x} \rightarrow \frac{1}{t}\right)\left(\nu \rightarrow \frac{Y^{2}}{t}\right),\left(\frac{d \Delta_{4}}{d x} \rightarrow \frac{Y}{X}\right)
$$

(2) Hence, for a fixed Prandtl number,

$$
\frac{Y}{X}=\left(\frac{X}{t}\right)^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{Y^{2}}{t}\right)^{c} Y^{d}
$$

(3) Equating the like exponents, it is easy to show that:

$$
\begin{equation*}
\frac{U_{\infty}}{\nu} \frac{d \Delta_{4}^{2}}{d x}=F\left(\frac{\Delta_{4}^{2}}{\nu} \frac{d U_{\infty}}{d x}\right)=F\left(\kappa_{T}\right) \tag{14}
\end{equation*}
$$

Determination of Functional - L12 ($\frac{10}{14}$)

(1) $U_{\infty}=C x^{m}$ is a special case of arbitrary variation of $U_{\infty}(x)$. Hence, the functional must admit similarity wedge flow solutions. Therefore, with $N u_{x} R e_{x}^{-0.5}=-\theta^{\prime}(0)=C_{1}(m)$

$$
\frac{U_{\infty}}{\nu} \frac{d \Delta_{4}^{2}}{d x}=\frac{1-m}{C_{1}^{2}} \quad \frac{\Delta_{4}^{2}}{\nu} \frac{d U_{\infty}}{d x}=\frac{m}{C_{1}^{2}}=\kappa_{T}
$$

(2) Hence, for a fixed Prandtl number

$$
\frac{1-m}{C_{1}^{2}}=F\left(\frac{m}{C_{1}^{2}}\right)=F\left(\kappa_{T}\right)
$$

$\mathbf{F}\left(\kappa_{T}\right)$ vs $\kappa_{T}\left(V_{w}=0\right)-\mathbf{L} 12\left(\frac{11}{14}\right)$

From known similarity solutions for $\operatorname{Pr}=0.7$, the relationship is nearly linear.
Y-intercept - Flat Plate
X-intercept - Stagnation
Using $C_{1}(\mathrm{~m}=0)=0.293$ and
$C_{1}(\mathrm{~m}=1)=0.493$
$\frac{U_{\infty}}{\nu} \frac{d \Delta_{4}^{2}}{d x}=11.67-2.87 \frac{\Delta_{4}^{2}}{\nu} \frac{d U_{\infty}}{d x}$

Further manipulation gives

$$
\Delta_{4}^{2}=\frac{11.67 \nu}{U_{\infty}^{2.87}} \int_{0}^{x} U_{\infty}^{1.87} d x
$$

Closed Form Soln $V_{w}^{*}=0-\operatorname{L12}\left(\frac{12}{14}\right)$

$$
S t_{x}=\frac{\alpha}{U_{\infty} \Delta_{4}}=0.418 \nu^{0.5} U_{\infty}^{0.435}\left[\int_{0}^{x} U_{\infty}^{1.87} d x\right]^{-0.5} \operatorname{Pr}=0.7
$$

In general

$$
S t_{x}=K_{1} \nu^{0.5} U_{\infty}^{K_{2}}\left[\int_{0}^{x} U_{\infty}^{K_{3}} d x\right]^{-0.5}
$$

where K_{1}, K_{2} and, K_{3} are functions of Prandtl number.

Flow over a Cylinder L12($\frac{13}{14}$)

For flow over an impervious cylinder, with $x^{*}=x / D$

$$
\frac{U_{\infty}}{V_{a}}=2 \sin \left(2 x^{*}\right)=F\left(x^{*}\right)
$$

Then, for $\operatorname{Pr}=0.7$ and $T_{w}=$ const

$$
\frac{\Delta_{4}}{D} R e_{D}^{0.5}=\frac{3.416}{F^{1.435}}\left[\int_{0}^{x^{*}} F^{1.87} d x^{*}\right]^{0.5}
$$

and

$$
S t_{x} R e_{D}^{0.5}=\frac{h_{x}}{\rho C p V_{a}} R e_{D}^{0.5}=\frac{0.418 F^{0.435}}{\left[\int_{0}^{x^{*}} F^{1.87} d x^{*}\right]^{0.5}}
$$

Evaluation:

$$
\overline{S t}_{s e p} R e_{D}^{0.5}=\frac{1}{x_{\text {sep }}} \int_{0}^{x_{\text {sep }}} S t_{x} R e_{D}^{0.5} d x=2.686
$$

Angular Variations Pr = 0.7 L12($\frac{14}{14}$)

θ deg	$\left(\Delta_{4} / D\right) R e_{D}^{0.5}$	$S t_{x} R e_{D}^{0.5}$
0.0573	$0.242 \mathrm{E}+01$	$0.296 \mathrm{E}+03$
0.515	$0.117 \mathrm{E}+01$	$0.679 \mathrm{E}+02$
2.00	$0.105 \mathrm{E}+01$	$0.194 \mathrm{E}+02$
4.98	$0.103 \mathrm{E}+01$	$0.801 \mathrm{E}+01$
10.0	$0.102 \mathrm{E}+01$	$0.402 \mathrm{E}+01$
30.0	$0.105 \mathrm{E}+01$	$0.136 \mathrm{E}+01$
50.0	$0.113 \mathrm{E}+01$	$0.821 \mathrm{E}+00$
70.0	$0.128 \mathrm{E}+01$	$0.592 \mathrm{E}+00$
80.0	$0.139 \mathrm{E}+01$	$0.521 \mathrm{E}+00$
90.0	$0.153 \mathrm{E}+01$	$0.465 \mathrm{E}+00$
100.0	$0.173 \mathrm{E}+01$	$0.419 \mathrm{E}+00$
105.0	$0.184 \mathrm{E}+01$	$0.401 \mathrm{E}+00$
108.3	$0.194 \mathrm{E}+01$	$0.388 \mathrm{E}+00$

