EXERCISE

1. For the initial value problem $\frac{d y}{d x}=3 x+y^{2}, x_{0}=0, y_{0}=1$, find first three approximations by Picard's method for $x=0.1$.

$$
\text { Ans: } y^{(1)}=1.11500 ; y^{(2)}=1.12640 ; y^{(3)}=1.12721
$$

2. Use Picard's method to find third approximation to solve

$$
\frac{d y}{d x}=1+x y, \text { with } x_{0}=2, \mathrm{y}_{0}=0 .
$$

$$
\text { Ans: } \frac{x^{5}}{15}-\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\frac{22}{15}
$$

3. Using Euler's modified method, find a solution of the equation $\frac{d y}{d x}=x+|\sqrt{y}|$ with initial condition $y=1$ at $x=0$ for the range $0 \leq x \leq 0.6$ in steps of 0.2 . Carry all calculations to 4D only.

$$
\text { Ans: } y_{(0.2)}^{c c c}=1.2309 ; y_{(0.4)}^{c c c}=1.5253 ; y_{(0.6)}^{c c c}=1.8861
$$

4. Given $\frac{d y}{d x}-1=x y$ and $y(0)=1$. Obtain the Taylor series for $y(x)$ and compute $y(0.1)$ corret to four decimal places.

$$
\text { Ans: } y(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{15}+\cdots-\cdots----\cdots(0.1)=1.1053
$$

5. Given the differential equation
$\frac{d y}{d x}=\frac{1}{x^{2}+y}$ with $y(4)=4$
Obtain y (4.1) and y (4.2) by Taylor's series method to 4D.
Ans: 4.0050, 4.0098
6. Use the Runge-Kutta fourth order method to find the value of y when $x=1$ given that $y=1$ when $x=0$ and that $\frac{d y}{d x}=\frac{y-x}{y+x}$

Ans: 1.4983
7. Using Runge-Kutta method, solve $y^{\prime}=x y$ for $x=1.4$ initially $x=1, \mathrm{y}=2$ by taking $h=0.2$.

Ans: 2.99486

