EXERCISE

1. Use Simpson's $\frac{1}{3}$ rd rule dividing the range into ten equal parts, to show that $\int_{0}^{1} \frac{\log _{e}\left(1+x^{2}\right)}{\left(1+x^{2}\right)}=0.1730$
2. Calculate an approximate value of $\int_{0}^{\pi / 2} \sin x d x$ by
(i) Traperoidal rule
(ii) Simpson's $\frac{1}{3}$ rd rule, using 11 ordinates

Ans: (i)0.9981 (ii)1.0006
3. A river is 80 feet wide. The depth d (in feet) of the river at a distance x from one bank is given by the following table:

$\mathrm{x}:$	0	10	20	30	40	50	60	70	80
$\mathrm{~d}:$	0	4	7	9	12	15	14	8	3

Find approximately the area of the cross- section of the river using Simpson's $\frac{1}{3}$ rd rule.
Ans:710 sq feet.
4. Compute the values of integral $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using the Traperoidal rule with $h=$ $0.5,0.25$ and 0.125 . Then, obtain a better estimate by using Romberg's method. Compare your result with the true value.

Ans: $0.77500,0.78279,0.78475,0.7854$
5. Determine the maximum error in evaluating the integral

$$
\mathrm{I}=\int_{0}^{\pi} \cos x d x
$$

by both Trapezoidal and Simpson's $\frac{1}{3}$ rd rules using four subintervals.
Ans: 0.0202, 0.000173
6. Using Simpson's $\frac{3}{8}$ th rule, evaluate

$$
\mathrm{I}=\int_{0}^{1} \frac{1}{1+x} d x
$$

with $h=1 / 6$. Evaluate the integral by using Trapezoidal rule as well as Simpson's $\frac{1}{3}$ rd, Simpson's $\frac{3}{8}$ th rule and compare the results with exact value

Exact: $0.69315 ;$ T.R. $0.69488 ; \frac{1}{3}$ rd S.R.; 0.69317; $\frac{3}{8}$ th S. R. ; 0.69320
7. Use three-point Gauss-Legendre formula to evaluate the integral $\int_{0}^{\pi} \sin x d x$. Compare this result with that obtained by Simpson's rule using seven points.

Ans: 1.00002
8. Compute the integral $\mathrm{I}=\int_{1.0}^{1.5} \sqrt{x} d x$, corret to 5D using Simpson's $\frac{1}{3}$ rd Simpson's rule by finding h sufficiently large. Compare the result with two- terms Gaussian formula

Ans: 0.55808
9. Use Simpson's $\frac{3}{8}$ th rule to evaluate $\int_{0}^{0.3} e^{x} d x$ where $h=0.05$ and compare with the exact value.

Ans: 0.34986
10. Evaluate the following integrals using Gauss three-points quadrature formula.
(i) $\int_{0.2}^{1.5} e^{-x^{2}} d x$
(ii) $\int_{0}^{\pi} \sin x^{2} d x$
(iii) $\int_{-4}^{4} \frac{1}{1+x^{2}} d x$
(iv) $\int_{0}^{\pi / 2} \frac{1}{\sqrt{\left.1-0.25 \sin ^{2} x\right)}} d x$
Ans: (i)0.65860 (ii) - 1.85036 (iii)3.97484 (iv)1.6857
11. Using Romberg's method, compute the integral

$$
\mathrm{I}=\int_{1}^{2} e^{x} d x, \text { by taking } h=0.5,0.25,0.125 \text { upto the order } \mathrm{O}\left(h^{6}\right)
$$

Ans: 4.67077
12. Evaluate the following integrals using Romberg's approach with Simpson's $\frac{1}{3}$ rd rule correct to $\mathrm{O}\left(h^{6}\right)$ by taking suitable h :
i) $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
(ii) $\int_{4}^{5.2} \log _{e} x d x$

Ans: $0.78540,0.79383$
