EXERCISE

1. Use Simpson's $\frac{1}{3}$ rd rule dividing the range into ten equal parts, to show that

$$\int_0^1 \frac{\log_e \left(1 + x^2\right)}{\left(1 + x^2\right)} = 0.1730$$

- 2. Calculate an approximate value of $\int_0^{\pi/2} \sin x \, dx \, by$
 - (i) Traperoidal rule
 - (ii) Simpson's $\frac{1}{3}$ rd rule, using 11 ordinates

Ans: (i)0.9981 (ii)1.0006

3. A river is 80 feet wide. The depth d (in feet) of the river at a distance x from one bank is given by the following table:

X:	0	10	20	30	40	50	60	70	80
d:	0	4	7	9	12	15	14	8	3

Find approximately the area of the cross- section of the river using Simpson's $\frac{1}{3}$ rd rule.

Ans:710 sq feet.

4. Compute the values of integral $I = \int_0^1 \frac{dx}{1+x^2}$ by using the Traperoidal rule with h = 0.5, 0.25 and 0.125. Then, obtain a better estimate by using Romberg's method. Compare your result with the true value.

Ans: 0.77500, 0.78279, 0.78475, 0.7854

5. Determine the maximum error in evaluating the integral

$$I = \int_0^\pi \cos x \, dx$$

by both Trapezoidal and Simpson's $\frac{1}{3}$ rd rules using four subintervals.

Ans: 0.0202, 0.000173

6. Using Simpson's $\frac{3}{8}$ th rule, evaluate

$$I = \int_0^1 \frac{1}{1+x} dx$$

with h = 1/6. Evaluate the integral by using Trapezoidal rule as well as Simpson's $\frac{1}{3}$ rd, Simpson's $\frac{3}{8}$ th rule and compare the results with exact value

Exact: 0.69315; T.R. 0.69488; $\frac{1}{3}$ rd S.R.; 0.69317; $\frac{3}{8}$ th S.R.; 0.69320

7. Use three-point Gauss-Legendre formula to evaluate the integral $\int_0^{\pi} \sin x \, dx$. Compare this result with that obtained by Simpson's rule using seven points.

8. Compute the integral I = $\int_{1.0}^{1.5} \sqrt{x} \, dx$, corret to 5D using Simpson's $\frac{1}{3}$ rd Simpson's rule by finding h sufficiently large. Compare the result with two- terms Gaussian formula

Ans: 0.55808

Ans: 1.00002

- 9. Use Simpson's $\frac{3}{8}$ th rule to evaluate $\int_0^{0.3} e^x dx$ where h = 0.05 and compare with the exact value. Ans: 0.34986
- 10. Evaluate the following integrals using Gauss three-points quadrature formula.

(i)
$$\int_{0.2}^{1.5} e^{-x^2} dx$$

(ii) $\int_{0}^{\pi} \sin x^2 dx$
(iii) $\int_{-4}^{4} \frac{1}{1+x^2} dx$
(iv) $\int_{0}^{\pi/2} \frac{1}{\sqrt{1-0.25sin^2x}} dx$
Ans: (i) 0.65860 (ii) - 1.85036 (iii) 3.97484 (iv) 1.6857

11. Using Romberg's method, compute the integral

I = $\int_{1}^{2} e^{x} dx$, by taking h = 0.5, 0.25, 0.125 upto the order $O(h^{6})$.

Ans: 4.67077

12. Evaluate the following integrals using Romberg's approach with Simpson's $\frac{1}{3}$ rd rule correct to O(h^6) by taking suitable h:

i)
$$\int_0^1 \frac{1}{1+x^2} dx$$
 (ii) $\int_4^{5.2} \log_e x dx$

Ans: 0.78540, 0.79383
