EXERCISE

1. Apply Lagrange's formula to find the cubic polynomial which includes the following values of x and y_x:

x:	0	1	4	6
y _x :	1	-1	1	-1

Ans : $\frac{x^3 - 9x^2 + 20x - 6}{-6}$.

- 2. Apply Lagrange's formula to find f (5), given that f(2)=4, f(3)=8, f(4)=16, f(7)=128 and explain why the result differs from 2^x .
- 3. By the use of Lagrange's formula find the polynomial of degree three passing through (0,1), (1,1), (2,2), (4,5)

Ans:
$$1 - \frac{2}{3}x + \frac{3}{4}x^2 - \frac{1}{12}x^3$$

4. By means of Newton's divided difference formula, find the values of f(8) and f(15) from the data:

11 4 5 7 x : 10 13

5. The following table gives the normal weights of babies during the first 12 months of life:

Age in months :	0	2	5	8	10	12
Weight in lbs :	7.5	10.25	15	16	18	21

Estimate the weight of the baby at the age of 7 months. Ans: 15.67 lbs 6. Find the form of the function f(x) for the following table:

x :	0	1	4	5	
f(x) :	8	11	68	123.	Ans: $x^3 - x^2 + 3x + 8$
		10.000	Shi (Processor)	- 100	

f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4. Using Newton's 7. Given that divided difference formula, show that f

$$f(6) = 5.67$$
 and $f(x) = (-x^2 + 9x + 16)/6$.

 $log_e 2 = 0.30103$, $log_e 3 = 0.47712$, $log_e 5 = 0.69897$, $log_e 7 = 0.69897$ 8. If 0.84510,

then find the value of
$$log_e 4.7$$
 correct to 4-decimals. Ans: 0.6734

Obtain the value of T when A = 85 from the following table using 9. Lagrange's method:

2 T: 5 8 14 A: 94.4 87.9 81.3 68.7 Ans: 6.5928

- 10. Find the smallest positive root of the equation $x^3 5x + 3 = 0$ by making a difference table taking x = 0, 1, 2 and 3 correct to 2D. Ans: 0.66
- 11. Find the root of equation $x^3 + x 3 = 0$ lying between 1.2 and 1.3 up to 4D by making a difference table for h = 0.1. Ans: 1.2134
- 12. Find the value x to 2 decimal accuracy lying between 15 and 25 satisfying the equation $x^2 + 250 \log_{10} x = 635$ using the method of successive approximations.