EXERCISE

1. Apply Lagrange's formula to find the cubic polynomial which includes the following values of x and y_{x} :

$$
\begin{array}{ccccc}
\mathrm{x}: & 0 & 1 & 4 & 6 \\
\mathrm{y}_{\mathrm{x}}: & 1 & -1 & 1 & -1
\end{array}
$$

$$
\text { Ans: } \frac{x^{3}-9 x^{2}+20 x-6}{-6} \text {. }
$$

2. Apply Lagrange's formula to find $f(5)$, given that $f(2)=4, f(3)=8, f(4)=16$, $f(7)=128$ and explain why the result differs from 2^{x}.
3. By the use of Lagrange's formula find the polynomial of degree three passing through (0,1), (1,1), (2,2), (4,5)

$$
\text { Ans: } 1-\frac{2}{3} x+\frac{3}{4} x^{2}-\frac{1}{12} x^{3}
$$

4. By means of Newton's divided difference formula, find the values of $f(8)$ and $\mathrm{f}(15)$ from the data:

$\mathrm{x}:$	4	5	7	10	11	13	
$\mathrm{f}(\mathrm{x}):$	48	100	294	900	1210	2028.	Ans: 448,3150

5. The following table gives the normal weights of babies during the first 12 months of life:

Age in months :	0	2	5	8	10	12
Weight in lbs :	7.5	10.25	15	16	18	21

Estimate the weight of the baby at the age of 7 months. Ans: 15.67 lbs
6. Find the form of the function $f(x)$ for the following table:

$$
\begin{array}{rlllcl}
\mathrm{x}: & 0 & 1 & 4 & 5 & \\
\mathrm{f}(\mathrm{x}): & 8 & 11 & 68 & 123 . & \text { Ans: } x^{3}-x^{2}+3 x+8
\end{array}
$$

7. Given that $f(1)=4, f(2)=5, f(7)=5, f(8)=4$. Using Newton's divided difference formula, show that

$$
f(6)=5.67 \text { and } f(x)=\left(-x^{2}+9 x+16\right) / 6 .
$$

8. If $\log _{e} 2=0.30103, \log _{e} 3=0.47712, \log _{e} 5=0.69897, \log _{e} 7=$ 0.84510,
then find the value of $\log _{e} 4.7$ correct to 4 -decimals.
Ans: 0.6734
9. Obtain the value of T when $A=85$ from the following table using Lagrange's method:
T:
2
5
8
14
A: $\quad 94.4$
87.9
81.3
68.7
Ans: 6.5928
10. Find the smallest positive root of the equation $x^{3}-5 x+3=0$ by making a difference table taking $x=0,1,2$ and 3 correct to 2D. Ans: 0.66
11. Find the root of equation $x^{3}+x-3=0$ lying between 1.2 and 1.3 up to 4 D by making a difference table for $\mathrm{h}=0.1$.

Ans: 1.2134
12. Find the value x to 2 - decimal accuracy lying between 15 and 25 satisfying the equation $x^{2}+250 \log _{10} x=635$ using the method of successive approximations.

