Exercises

1. Evaluate the following:

(i)
$$\left(\frac{\Delta^2}{E}\right) e^{\lambda}$$

(ii)
$$\frac{Ee^x}{\Delta^2 e^x}$$

(i)
$$\left(\frac{\Delta^2}{E}\right)e^x$$
 (ii) $\frac{Ee^x}{\Delta^2e^x}$ (iii) $\Delta\left(\frac{2^x}{(x+1)!}\right)$ (iv) $\frac{\Delta^2x^3}{Ex}$

(iv)
$$\frac{\Delta^2 x^3}{Ex}$$

$$(v) \Delta \sin(2x)$$

(vi)
$$\Delta \log(cx)$$

(vii)
$$\Delta \cot(2^x)$$

(v)
$$\Delta \sin(2x)$$
 (vi) $\Delta \log(cx)$ (vii) $\Delta \cot(2^x)$ (viii) $\frac{\Delta}{E} \sin(2x)$

(ix)
$$\Delta^3[(1-ax)(1-bx)(1-cx)]$$

(ix)
$$\Delta^3[(1-ax)(1-bx)(1-cx)]$$
 (x) $\frac{\Delta^2}{E}\sin(x+h) + \frac{\Delta^2\sin(x+h)}{E\sin(x+h)}$

2. Find f (1.1) from the following table:

х	1	2	3	4	5
f(x)	7	12	29	64	123

3. Given, $u_0 = 1$, $u_1 = 11$, $u_2 = 21$, $u_3 = 29$, find $\Delta^4 u_0$.

4. Prove that $e^{-hD} \equiv 1 - \nabla$

[Hint: Already proved $\nabla E \equiv \Delta$, therefore, $E \equiv 1 + \Delta \equiv 1 + \nabla E$, $\Longrightarrow E - \nabla E$]

5. Find u_0 , given $u_0 = -3$, $u_1 = 6$, $u_2 = 8$, $u_3 = 12$.

6. Given that u_x is a polynomial of second degree and $u_0 = 1$, $u_1 + u_2 = 10$, $u_3 + u_4 + u_5 = 10$ 65. Find the value of u_{10} .