Exercises

1. Evaluate the following:
(i) $\left(\frac{\Delta^{2}}{E}\right) e^{x}$
(ii) $\frac{E e^{x}}{\Delta^{2} e^{x}}$
(iii) $\Delta\left(\frac{2^{x}}{(x+1)!}\right)$
(iv) $\frac{\Delta^{2} x^{3}}{E x}$
(v) $\Delta \sin (2 x)$
(vi) $\Delta \log (c x)$
(vii) $\Delta \cot \left(2^{x}\right)$
(viii) $\frac{\Delta}{E} \sin (2 x)$
(ix) $\Delta^{3}[(1-a x)(1-b x)(1-c x)]$
(x) $\frac{\Delta^{2}}{E} \sin (x+h)+\frac{\Delta^{2} \sin (x+h)}{E \sin (x+h)}$
2. Find f (1.1) from the following table:

x	1	2	3	4	5
$f(x)$	7	12	29	64	123

3. Given, $u_{0}=1, u_{1}=11, u_{2}=21, u_{3}=29$, find $\Delta^{4} u_{0}$.
4. Prove that $e^{-h D} \equiv 1-\nabla$
[Hint: Already proved $\nabla E \equiv \Delta$, therefore, $E \equiv 1+\Delta \equiv 1+\nabla E, \Rightarrow E-\nabla E$]
5. Find u_{0}, given $u_{0}=-3, u_{1}=6, u_{2}=8, u_{3}=12$.
6. Given that u_{x} is a polynomial of second degree and $u_{0}=1, u_{1}+u_{2}=10, u_{3}+u_{4}+u_{5}=$ 65. Find the value of u_{10}.
