## Exercises

(1) Use Jacobi's method to solve the following system of equations, with $x^{(0)}=(1,1,1)^{T}$ as initial approximation, correct to 2 significant figures.

$$
\begin{aligned}
& x-10 y+3 z=39 \\
& 10 x-2 y-5 z=26 \\
& 4 x-5 y+10 z=47
\end{aligned}
$$

What is the minimum number of iterations required to get 5 significant digit accuracy, if 5 digit arithmetic is used.
(Ans: True solution $(3,-3,2)^{T}$; number of iteration required=36)
(2) Do three iterations of Jacobi's method to solve

$$
\begin{aligned}
& -2 x+3 y+10 z=22 \\
& 10 x+2 y+z=9 \\
& x+10 y-z=-22
\end{aligned}
$$

with $x^{(0)}=(1,-1,1)^{T}$ as starting vector. What is the minimum number of iterations required, so that the solution is correct to 4 decimal places.
(Ans: True solution $(1,-2,3)^{T}$; number of iteration required $=17$ )
(3) Solve, by Gauss-Seidal iteration method, the system of linear equations

$$
\begin{aligned}
& 3 x+9 y-2 z=11 \\
& 4 x+2 y+13 z=24 \\
& 4 x-2 y+z=-8
\end{aligned}
$$

correct up to four significant figures.

$$
\text { (Ans: } \quad x=-1.423, y=2.131, z=1.956)
$$

(4) Compute the solution of the system of linear equations by Gauss-Seidal iteration method

$$
\begin{aligned}
& 6.7 x+1.1 y+2.2 z=20.5 \\
& 3.1 x+9.4 y-1.5 z=22.9 \\
& 2.1 x-1.5 y+8.4 z=28.8
\end{aligned}
$$

correct up to 3-significant figures.

$$
\text { (Ans: } x=1.50, y=2.50, z=3.50 \text { ) }
$$

(5) Do five iterations of each Jacobi's and Gauss Seidel method to solve

$$
\begin{aligned}
& 2 x+3 y+7 z=16 \\
& 3 x+y+z=6 \\
& x+5 y+3 z=10
\end{aligned}
$$

with starting initial guess as $(x, y, z)=(1,1,1)$. What is the minimum number of iterations required, so that the solutions correct to 8 significant figures?
(Ans: True solution: $x=1.2, y=0.8, z=1.6$ )

