
NATIONAL PROGRAMME ON TECHNOLOGY

ENHANCED LEARNING (NPTEL)
IIT KANPUR

ADDITIONAL PROBLEMS ON
CALCULUS OF VARIATIONS WITH SOLUTIONS

1. Find the extremals for the functional

I(y) =

∫ 1

0

[
(y′)2 − y2

]
dx,

satisfying the boundary conditions y(0) = 1 and y(1) = 1.

Solution: Comparing the given functional to the standard form

I(y) =

∫ 1

0

F (x, y(x), y′(x))dx,

we have F (x, y, y′) =I(y) = (y′)2 − y2 and the Euler equation Fy − d
dx
Fy′ = 0 implies

that the extremals must satisfy the differential equation y′′+y = 0. Thus, the extremals
are given by y(x) = A cosx+B sinx. The boundary conditions imply that A = 0 and
B = 1/ sin 1. Hence the function which extremizes the given functional is given by
y(x) = sin x/ sin 1.

2. Find the extremals for the functional

I(y) =

∫ 1

0

[
(y′)2 + xy

]
dx,

satisfying the boundary conditions y(0) = 1 and y(1) = 1.

Solution: Here F (x, y, y′) = (y′)2 + xy. The Euler equation implies that y′′ = x/2.
Integrating twice, we get the extremals as y(x) = (x3/12) +Ax+B. Boundary condi-
tions give us B = 0 and A = 11/12. Hence the extremal which extremizes the given
functional is given by y = (x3 + 11x)/12.

3. Show that there is no y ∈ C[0, 1] which extremizes the functional

I(y) =

∫ 1

0

y2dx, y(0) = 0, y(1) = A,

unless A = 0.

Solution: We have F (x, y, y′) = y2 and the Euler equation gives y = 0. Hence if A 6= 0,
we have no continuous function extremizing the given functional.

4. Analyze the functional

I(y) =

∫ 1

0

[y2 + x4y′]dx, y(0) = 0, y(1) = A,

for extremals.

Solution: We have F = y2 + x4y′ and the Euler equation gives y = 2x3. y(0) = 0 is
satisfied but y(1) = A will be satisfied only when A = 2. So, if A 6= 0 we have no
extremals satisfying the boundary conditions.
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5. Show that the curve of minimum length joining two points in a plane is the straight
line joining these two points.

Solution: The functional giving the length of a plane curve between two given points
(x1, y1) and (x2, y2) is given by

l(y) =

∫ x2

x1

ds =

∫ x2

x1

√
1 + y′2 dx, y(x1) = y1, y(x2) = y2.

We have F =
√

1 + y′2. Here F is independent of the variable y hence Fy = 0. The
first integral of the Euler equation gives Fy′ = C, where C is any arbitrary constant.
This leads us to y′2 = C(1 + y′2). Clearly, C 6= 1. Solving for y′ we get y′ = D, where
D is another constant given in terms of C. Hence y = Dx+ E, E is also an arbitrary
constant. The boundary conditions can be used to determine D and D. Thus, we get
the extremal as the straight line joining the given two points in the plane.

6. Formulate the functional for the lines of propagation of light in optically non-homogeneous
medium in which the speed of light is v(x, y, z) and hence obtain the differential equa-
tions for the same.

Solution: According to Fermat’s principle, light is propagated from a point A(x1, y1, z1)
to another B(x2, y2, z2) along a curve Γ(x, y(x), z(x)), x1 ≤ x ≤ x2 for which the time
t(y, z) of passage will be the least. We have

t(y, z) =

∫ x2

x1

ds

v
=

∫ x2

x1

√
1 + y′2 + z′2

v(x, y, z)
dx.

The system of Euler equations Fy − d
dx
Fy′ = 0 and Fz − d

dx
Fz′ = 0 gives the system of

differential equations

vy

(√
1 + y′2 + z′2

v2

)
+

d

dx

(
y′

v
√

1 + y′2 + z′2

)
= 0,

vz

(√
1 + y′2 + z′2

v2

)
+

d

dx

(
z′

v
√

1 + y′2 + z′2

)
= 0.

7. Let S be the surface of the sphere x2+y2+z2 = a2 and let P (x1, y1, z1) and Q(x2, y2, z2)
be two points on S. Show that the curve joining P and Q with shortest length is a
geodesic.

Solution: Let S be parameterized spherical co-ordinates

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ.

Let a curve joining P and Q be given by θ = f(φ), φ1 ≤ φ ≤ φ2. Now, the functional
for the length of a curve is∫ Q

P

√
dx2 + dy2 + dz2 =

∫ φ2

φ1

√
1 + θ′2 sin2 φ dφ.
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Here F (φ, θ(φ), θ′(φ)) =
√

1 + θ′2 sin2 φ. Since Fθ = 0, first integration of the Euler
equation Fθ − d

dφ
Fθ′ = 0 gives Fθ′ = C. Hence, we have

sin2 φθ′√
1 + θ′2 sin2 φ

= C.

Solving for θ′ we get

θ′ =
C cosec2 φ√
1− cosec2 φ

Integrating it over (φ1, φ2), we get

θ =

∫ φ2

φ1

C cosec2 φ√
1− C2cosec2 φ

dφ+D =

∫ φ2

φ1

cosec2 φ√
E − cot2 φ

dφ+D,

where E = 1
C2 − 1.

Now, we put cotφ = t
√
E to get cosec2 φ dφ = dt

√
E. Thus, we get

θ =

∫ t2

t1

dt√
1− t2

+D = sin−1 t|t2t1 +D.

Let t1 be fixed and t2 = t be the movable point on the curve.

Then we have

θ =

∫ t

t1

dt√
1− t2

+D = sin−1 t|tt1 +D,

which implies sin(θ+α) = t = β cotφ, for some constants α and β. This relation leads
to

a sin θ cosφ+ b sin θ sinφ+ c cos θ = 0

which is equal to ax + by + cz = 0 a plane passing through the origin. Thus the
curve is a part of intersection of a plane passing through the origin and the sphere
x2 + y2 + z2 = a2 which is a geodesic.

where ti = cotφi/
√
E, i = 1, 2.

8. Show that the extremals for the functional

I(z) =

∫ ∫
D

[
z2x + z2y

]
dxdy,

are the solutions of the Laplace equation zxx + zyy = 0, in a bounded domain D with
sufficiently smooth boundary.

Solution: In this case we have F = z2x + z2y . In order z(x, y) to extremize the given
functional, it must satisfy

Fz − (Fzx)x − (Fzy)y = 0,

which leads to −2zxx − 2zyy = 0, i.e., zxx + zyy = 0.
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9. Find the extremals for the functional

I(y, z) =

∫ x1

0

[
y′

2
+ z′

2
+ 2yz

]
dx, y(0) = 0 = z(0),

and the point (x1, y(x1), z(x1)) moves on the plane x = x1.

Solution: The extremals are given by the system Fy − d
dx
Fy′ = 0 and Fz − d

dx
Fz′ = 0,

where F = y′2 + z′2 + 2yz. Hence y and z must satisfy z′′ − y = 0 and y′′ − z = 0.
Differentiating the first equation twice, we get z(4) − z = 0 which has the general
solution z(x) = Aex +Be−x +C cosx+D sinx. Now z(0) = 0 implies A+B +C = 0.
y(0) = z′′(0) = 0 implies that A + B − C = 0. Thus C = 0 and B = −A. Hence
z = A1 sinhx+B1 sinx. The condition at the moving point is

[F − y′Fy′ − z′Fz′ ]|x=x1 δx1 + Fy′|x=x1δy1 + Fz′|x=x1δz1 = 0.

Since the point (x1, y(x1), z(x1)) is moving on x = x1, we have δx1 = 0. The variations
δy1 and δ1 are arbitrary, we have

Fy′|x=x1 = 0, Fz′|x=x1 = 0.

These conditions imply that y′(x1) = 0 = z′′′(x1) and z′(x1) = 0. Thus

A1 coshx1 +B1 cosx1 = 0, A1 coshx1 −B1 cosx1 = 0.

If cosx1 6= 0 then A1 = B1 = 0. Then y = z = 0. If cos x1 = 0 then x1 = (2n + 1)π/2
where n ∈ Z, and A1 = 0. In this case y = B1 sinx and z = −B1 sinx. The value of
I(y, z) = 0 for these functions.

10. Test the functional∫ x2

x1

[6y′
2 − y′4 + yy′]dx, y(x1) = 0, y(x2) = α, x2 > x1 > 0, α > 0,

for an extremum with extremals y ∈ C1[x1, x2].

Solution: We have F = 6y′2 − y′4 + yy′ and the Euler equation imply

y′ − 12y′′ + 12y′
2
y′′ − y′ = 0.

Thus,
(1− y′2)y′′ = 0.

So, either y′′ = 0 which gives y = Ax + B or y′ = ±1 which give y = ±x + D. Hence
extremals are straight lines. y(x1) = 0 implies 0 = Ax1 + B hence A = −B/x1. The
condition y(x2) = α implies α = −B[(x2/x1)− 1]. Thus, B = −αx1/(x2−x1). Putting
these values of the constants A and B we get the extremal as

y = α
x− x1
x2 − x1

.

This is a part of the pencil of extremals y = C(x − x1) that form a central field at
(x1, 0).
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Now we construct the Weierstrass function E(x, y, y′, p) = F (x, y, y′) − F (x, y, p) −
(y′ − p)Fp(x, y, p) for the given functional. Here we have F (x, y, y′) = 6y′2 − y′4 + yy′

and F (x, y, p) = 6p2 − p4 + yp. Thus, we have

E(x, y, y′, p) = 6y′
2 − y′4 + yy′ − 6p2 + p4 − yp− (y′ − p)(12p− 4p3 + y)

= (y′ − p)[6(y′ − p)− 3(y′
3 − p3) + y′(y′

2 − p2) + y′
2
(y′ − p)]

= −(y′ − p)2[−6 + 3(y′
2

+ y′p+ p2)− y′(y′ + p)− y′2]
= −(y′ − p)2[y′2 + 2y′p+ (3p2 − 6)].

The sign of E will depend on the sign of Q = y′2 + 2y′p + (3p2 − 6). That is, E ≥ 0
if and only if Q ≤ 0 and E ≤ 0 if and only if Q ≥ 0. Q changes sign when y′ passes
through the value

y′ = −p±
√

6− 3p2.

For Large positive value of p and y′ close to p, Q > 0 and hence if 6 − 3p2 < 0 then
we have no real value of y′ for which Q will vanish and hence it remains positive for
6 − 3p2 ≤ 0. For 6 − 3p2 > 0, Q changes sign. For p = 1, we have Q = y′2 + 2y′ − 3
and Q = 0 for y′ = 1. Hence for p > 1 and y′ close to p, i.e., y′ > 1 we have Q > 0.
Similarly, for p < 1 and y′ < 1, we have Q < 0. Thus, we have, for the slop of the
extremal p = α/(x2 − x1) > 1 and the slop of neighboring extremals y′ close to p,
E < 0, i.e., we have weak maximum. and for the case p = α/(x2−x1) < 1 and y′ close
to p, we have E > 0, i.e., we have weak minimum.

ADDITIONAL PROBLEMS ON
INTEGRAL EQUATIONS WITH SOLUTIONS

1. Show that u(x) = cosh x is a solution of the integral equation u(x) = 2 coshx −
x sinhx− 1 +

∫ x
0
tu(t)dt.

Solution:
∫ x
0
t cosh tdt = x sinhx− coshx+ 1, hence the result follows.

2. Convert the following initial value problem to an equivalent integral equation,

d3y

dx3
− d2y

dx2
− dy

dx
+ y = 0, y(0) = 2, y

′
(0) = 0, y

′′
(0) = 2.

Solution: Let y
′′′

(x) = u(x), then y
′′
(x) = 2+

∫ x
0
u(t)dt, y

′
(x) = 2x+

∫ x
0

(x−t)u(t)dt,
y(x) = 2 + x2 + 1

2

∫ x
0

(x − t)2u(t)dt. Substituting into the given equation we find the
required integral equation

u(x) = 2x− x2 +

∫ x

0

[
1 + (x− t)− 1

2
(x− t)2

]
u(t)dt.

3. Solve the following Volterra integral equation by the successive approximations method,

u(x) = 1− x− x2

2
+

∫ x

0

(x− t)u(t)dt.

Solution: We assume the first approximation as u0(x) = 1. Then we can find succes-
sively, u1(x) = 1−x− x2

2
+
∫ x
0

(x−t)u0(t)dt = 1−x, u2(x) = 1−x− x2

2
+
∫ x
0

(x−t)u1(t)dt =

1− x− x3

6
, u3(x) = 1− x− x2

2
+
∫ x
0

(x− t)u2(t)dt = 1− x− x3

6
− x5

120
and so on. Finally

we can verify that u(x) = 1− sinhx.
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4. Solve the following Volterra integral equation by the series solution method,

u(x) = x cosx+

∫ x

0

tu(t)dt.

Solution: Substituting u(x) =
∞∑
n=0

anx
n on both sides of the given equation and then

integrating we get,

a0 + a1x+ a2x
2 + a3x

3 + · · · =
(
x− x3

2!
+
x5

4!
− · · ·

)
+

(
a0
x2

2
+ a1

x3

3
+ a2

x4

4
· · ·
)
.

Equating like powers of x from both sides we get, a0 = 0, a1 = 1, a2 = 0, a3 = −1
6
,

a4 = 0, a5 = 1
5!

. Hence the required solution is u(x) = sinx.

5. Use Adomian decomposition method to solve the following integral equation,

u(x) = 6x− x3 +
1

2

∫ x

0

tu(t)dt.

Solution: u0(x) = 6x − x3, u1(x) = x3 − x5

10
, u3(x) = x5

10
− x7

140
and hence the required

solution is u(x) = u0(x) + u1(x) + u2(x) + · · · = 6x.

6. Use the modified Adomian decomposition method to solve the following integral equa-
tion,

u(x) = secx tanx+ (e− esecx) +

∫ x

0

esec tu(t)dt, x < π/2.

Solution: According to the modified Adomian decomposition method we assume f1(x) =
secx tanx and f2(x) = (e− esecx). Then u0(x) = f1(x), u2(x) = f2(x)+

∫ x
0
esec tu0(t)dt =

0 and so on. Hence the required solution is u(x) = sec x tanx.

7. Solve the integral equation u(x) = 1+λ
∫ 1

0
(1−3xt)u(t)dt by using the resolvent kernel

method.

Solution: K1(x, ξ) = K(x, ξ) = (1 − 3xξ), K2(x, ξ) = 1 − 3
2
(x + ξ) + 3xξ, K3(x, ξ) =

1
4
K1(x, ξ) = 1

4
(1− 3xξ), K4(x, ξ) = 1

4
K2(x, ξ), K5(x, ξ) =

(
1
4

)2
K1(x, ξ). Hence,

R(x, ξ;λ) = [K1(x, ξ)+λ
2K3(x, ξ)+λ

4K5(x, ξ)+· · · ]+[λK2(x, ξ)+λ
3K4(x, ξ)+λ

5K6(x, ξ)+· · · ]

= (1− 3xξ)

[
1 +

λ2

4
+
λ4

42
+ · · ·

]
+ λ

(
1− 3

2
(x+ ξ) + 3xξ

)[
1 +

λ2

4
+
λ4

42
+ · · ·

]
=

4

4− λ2

[
1 + λ− 3

2
λx− 3ξ

(
x+

λ

2
− λx

)]
, |λ| < 2.

Hence the required solution is

u(x) = 1 + λ

∫ 1

0

R(x, t;λ)dt =
4 + 2λ(2− 3x)

4− λ2
, |λ| < 2.
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8. Solve the following Fredholm integral equation by using successive substitution,

u(x) = sinx+
1

2

∫ π/2

0

cosxu(t)dt.

Solution: Using successive substitution method we find,

u(x) = sinx+
1

2

∫ π/2

0

cosx sin tdt+ +
1

4

∫ π/2

0

cosx

(∫ π/2

0

cos t sin sds

)
dt+ · · · .

Evaluating the successive integrals,

u(x) = sinx+
1

2
cosx+

1

4
cosx+

1

8
cosx+ · · · = sinx+ cosx.

9. Use the method of degenerate kernel to solve the integral equation,

u(x) = ex + λ

∫ 1

0

2exetu(t)dt.

Solution: Let c =
∫

012etu(t)dt, then from the given equation, u(x) = ex+2λexc. Sub-

stituting in the given equation and then solving for c we find c = e2−1
2[1−λ(e2−1)] . Hence

the required solution is u(x) = ex

1−λ(e2−1) , λ 6=
1

e2−1 .

10. Solve the following singular integral equation by using the Laplace transform method,∫ x

0

u(t)√
x− t

dt = 1 + x+ x2.

Solution: Taking Laplace transform of the given equation we find,

L[u(x)]L
[

1√
x

]
= L[1] + L[x] + L[x2] ⇒ L[u(x)] =

1√
π

[
1
√
p

+
1√
p3

+
2√
p5

]
.

Taking inverse Laplace transform, we get

u(x) =
1

π

[
1√
x

+ 2
√
x+

8

3

√
x3
]
.
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