APPLIED MULTIVARIATE ANALYSIS

FREQUENTLY ASKED QUESTIONS

AMIT MITRA \& SHARMISHTHA MITRA

DEPARTMENT OF MATHEMATICS \& STATISTICS, INDIAN INSTITUTE OF TECHNOLOGY KANPUR.
[1] The variance covariance matrix of a 3-dimensional random vector $\underset{\sim}{X}=\left(X_{1}, X_{2}, X_{3}\right)$ is given by

$$
\Sigma=\left(\begin{array}{ccc}
25 & -2 & 4 \\
-2 & 4 & 1 \\
4 & 1 & 9
\end{array}\right)
$$

(a) Find the correlation matrix.
(b) Find the correlation between X_{1} and $\frac{X_{2}}{2}+\frac{X_{3}}{2}$.
[2] Suppose $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{P}\right)^{\prime}$ is a p-dimensional random vector with $E(\underset{\sim}{X})=\underset{\sim}{\mu} \underset{\sim}{x}$ and $\operatorname{Cov}(\underset{\sim}{X})=\Sigma$. Find the covariance matrix of the random vector $\underset{\sim}{Z}=\left(\underset{\sim}{c_{1}^{\prime}} \underset{\sim}{X}, \ldots \ldots .,{\underset{\sim}{k}}_{c_{k}^{\prime}}^{\underset{\sim}{X}}\right)$; where ${\underset{\sim}{c}}_{j}^{\prime} \in \mathfrak{R}^{P}$ are vectors of constants.
[3] Show that $|S|=s_{11} \ldots . s_{p p}|R|$, where S is the sample variance covariance matrix and R is the sample correlation matrix.
[4] Suppose the random vector $\underset{\sim}{X}$ is such that $E(\underset{\sim}{X})=\underset{\sim}{\mu}$ and $\operatorname{Cov}(\underset{\sim}{X})=\Sigma$. Find $E(\underset{\sim}{X} \underset{\sim}{X})$. Let $\underset{\sim}{Y}$ be another random vector with $E(\underset{\sim}{Y})=\underset{\sim}{\delta}$ and $\operatorname{Cov}(\underset{\sim}{X}, \underset{\sim}{Y})=\Sigma_{X Y}$. Derive $E(\underset{\sim}{Y} \underset{\sim}{X})$.
[5] Suppose the observed data matrix for a 3-dimensional random vector is given by

$$
x=\left(\begin{array}{ccc}
-1 & 2 & 5 \\
3 & 4 & 2 \\
-2 & 2 & 3
\end{array}\right)
$$

(a) For the observations on variable X_{1}, find the projection on $\underset{\sim}{1}$.
(b) Find the deviation vectors and link them with the sample standard deviations.
(c) Calculate the angle between the deviation vectors ${\underset{\sim}{d}}_{1}$ and $\underset{\sim}{d}{ }_{2}$.
(d) Using the deviation vectors $\underset{\sim}{d}, \underset{\sim}{d}$ and ${\underset{\sim}{3}}_{3}$, find $\boldsymbol{X}-\underset{\sim}{\bar{\alpha}} \underset{\sim}{1}$ and verify whether it is of full rank.
(e) Find the generalized sample variance and the total sample variance.
[6] Suppose the mean vector and covariance matrix of $\underset{\sim}{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\prime}$ is given by

$$
\underset{\sim}{\mu}=\left(\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right), \quad \Sigma=\left(\begin{array}{cccc}
3 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 \\
2 & 1 & 9 & -2 \\
2 & 0 & -2 & 4
\end{array}\right) .
$$

Let $\underset{\sim}{X}(1)=\left(X_{1}, X_{3}\right)^{\prime}$ and $\underset{\sim}{X}(2)=\left(X_{2}, X_{4}\right)^{\prime}$ be 2 subvectors; $A=(1,2)$ and $B=\left(\begin{array}{ll}1 & -2 \\ 2 & -1\end{array}\right)$.
(a) Find $\operatorname{Cov}(A \underset{\sim}{X}(1)), \operatorname{Cov}(B \underset{\sim}{X}(2))$ and $\operatorname{Cov}(A \underset{\sim}{X}(1), B \underset{\sim}{X}(2))$.
(b) Find the joint distribution of $A \underset{\sim}{X}(1)$ and $B \underset{\sim}{X}(2)$ if $\underset{\sim}{X} \sim N_{4}(\underset{\sim}{\mu}, \Sigma)$.
(c) With $\underset{\sim}{X} \sim N_{4}(\underset{\sim}{\mu}, \Sigma)$, find the marginal distributions of $\underset{\sim}{X}(1)$ and $\underset{\sim}{X}(2)$ and the conditional distribution of $\underset{\sim}{X}(2)$ given $\underset{\sim}{X}(1)$.
[7] Suppose the covariance matrix of a 3-dimensional random vector $\underset{\sim}{X}$ is given by

$$
\Sigma=\left(\begin{array}{ccc}
\sigma^{2} & \rho \sigma^{2} & 0 \\
\rho \sigma^{2} & \sigma^{2} & \rho \sigma^{2} \\
0 & \rho \sigma^{2} & \sigma^{2}
\end{array}\right) ;|\rho|<\frac{1}{\sqrt{2}}
$$

Suppose the underlying random vector is $N_{3}(\underset{\sim}{0}, \Sigma)$, find the joint distribution and the marginal distributions of the principal components.
[8] Determine the population principal components Y_{1} and Y_{2} for the covariance matrix $\Sigma=\left(\begin{array}{ll}5 & 2 \\ 2 & 5\end{array}\right)$. Further, find $\rho_{Y_{1}, X_{1}}$ and $\rho_{Y_{1}, X_{2}}$.
[9] Let $\underset{\sim}{X}, \ldots ., \underset{\sim}{X}$ be a random sample from $N_{p}(\underset{\sim}{0}, \Sigma), \Sigma>0$. Define the $p \times n$ data matrix X as $X=(\underset{\sim}{X}, \ldots, \underset{\sim}{X})$
(a) Find the distribution of $\underset{\sim}{U^{\prime}}\left(I_{n}-\frac{1}{n} \underset{\sim}{1}{\underset{\sim}{\prime}}^{\prime}\right) \underset{\sim}{U}$, where $\underset{\sim}{U}=\left(U_{1}, \ldots, U_{n}\right)^{\prime}$ with $U_{i}=\underset{\sim}{a}{\underset{\sim}{X}}_{i}^{X}$, $i=1(1) n, \underset{\sim}{a} \in \mathfrak{R}^{p}, \underset{\sim}{a} \neq \underset{\sim}{0}$.
(b) Find the distribution of $X \underset{\sim}{b}, \underset{\sim}{b} \in \mathfrak{R}^{n}$ such that $\underset{\sim}{\underset{\sim}{b}} \underset{\sim}{b}=1$.
(c) Find the distribution of $\underset{\sim}{b} X^{\prime} \Sigma^{-1} X \underset{\sim}{b}$.
[10] Let $Y_{0}, Y_{1}, \ldots, Y_{p}$ be independent and identically distributed random variables with mean 0 and variance σ^{2}. Define $X_{i}=Y_{0}+Y_{i} ; i=1(1) p$.
(a) Show that there is a principal component of $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$ that is proportional to $\bar{X}=\frac{1}{p}{\underset{\sim}{r}}^{\prime} \underset{\sim}{X}$.
(b) Show that the above principal component is in fact the first principal component.
[11] Let $\underset{\sim}{X}, \ldots, \underset{\sim}{X}$ be a random sample from a p-dimensional multivariate population with mean vector $\underset{\sim}{\mu}$ and covariance matrix Σ. Let $X=\left(\underset{\sim}{X}, \ldots, \underset{\sim}{X}{ }_{n}\right)$ be the $p \times n$ data matrix. Prove or disprove

$$
" n S_{n}=X\left(I_{n}-\frac{1}{n} \frac{1}{n} n \frac{1}{n} n\right) X^{\prime} "
$$

where, S_{n} is the sample variance covariance matrix with divisor n.
[12] Let $\underset{\sim}{X} \sim N_{p}(\underset{\sim}{0}, \Sigma)$, where Σ is a singular matrix of rank $r<p$ and \exists a non singular $p \times p$ matrix H э

$$
H \Sigma H^{\prime}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

If B is a g-inverse of Σ, find the distribution of $\underset{\sim}{X} B \underset{\sim}{X}$.
[13] Let $\underset{\sim}{X}, \underset{\sim}{X}{\underset{\sim}{2}}^{2}, \ldots, \underset{\sim}{X}$ be i.i.d. $N_{m}\left(\underset{\sim}{\mu}, \sigma^{2} I_{m}\right)$ and B is $k \times m$ matrix of constants with $B B^{T}=I_{k}$.
(a) Find the distribution of

$$
\text { (i) } \sum_{j=1}^{n} B \underset{\sim}{X}{ }_{j} \text {, (ii) } \sum_{j=1}^{n}(\underset{\sim}{X} \underset{j}{ }-\underset{\sim}{\mu})^{T}(\underset{\sim}{X} \underset{\sim}{x}-\underset{\sim}{\mu}) \text { and (iii) } \sum_{j=1}^{n}(\underset{\sim}{X}-\underset{\sim}{\mu})(\underset{\sim}{X}-\underset{\sim}{\mu})^{T} \text {. }
$$

(b) Let $\underset{\sim}{Y}=B \underset{\sim}{X}$, find the distribution of $Z=\left(\underset{\sim}{X}{\underset{\sim}{X}}_{n}^{X}-\underset{\sim}{Y}{ }_{\sim}^{T} \underset{\sim}{Y}\right)$. Are Z and $\underset{\sim}{X}{ }_{n}$ independent? Are Z and $\underset{\sim}{Y}$ independent?
[14] Let $\underset{\sim}{X}, i=1, \ldots, n$ be independently distributed as $N_{P}(\underset{\sim}{\mu}, \Sigma)$. Find the distribution of $\sum_{i=1}^{n} a_{i}{\underset{\sim}{X}}_{i}$; where $a_{1}, \ldots ., a_{n}$ are real.
[15] Let $\underset{\sim}{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ be distributed as $N_{3}(\underset{\sim}{\mu}, \Sigma)$,

$$
\Sigma=\left(\begin{array}{ccc}
1 & \rho & \rho \\
\rho & 1 & \rho \\
\rho & \rho & 1
\end{array}\right) ;-1 / 2<\rho<1
$$

[16] Find the joint probability density function of $\left(X_{1}+X_{2}, X_{1}-X_{2}\right)^{\prime}$.
[17] Let $\underset{\sim}{X} \sim N_{2}(\underset{\sim}{\mu}, \Sigma)$ with $\underset{\sim}{\mu}$ and $\Sigma=\left(\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right)$. Find the distribution of $Y=X_{1}^{2}+\frac{3}{2} X_{2}^{2}-2 X_{1} X_{2}$.
[18] Suppose $\underset{\sim}{Y} \sim N_{n}\left(X \underset{\sim}{\mu}, I_{n}\right)$, where X is a $n \times p$ matrix of constants and $\underset{\sim}{\mu}$ is a $p \times 1$ vector of constants. Find the distribution of $\underset{\sim}{Y}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \underset{\sim}{Y}$.
[19] Suppose $\underset{\sim}{X} \sim N_{2}(\underset{\sim}{\mu}, \Sigma)$ with $\underset{\sim}{\mu}=(2,2)^{\prime}$ and $\Sigma=I_{2}$. Consider $A=(1,1)$ and $B=(1,-1)$. Verify whether $A \underset{\sim}{X}$ and $B \underset{\sim}{X}$ are independent.
[20] Let $\underset{\sim}{X}, \underset{\sim}{X}{\underset{\sim}{2}}^{X}, \ldots,{\underset{\sim}{x}}_{n}$ be a random sample from a population which is $N_{P}(\underset{\sim}{\mu}, \Sigma)$.
(a) Derive the sufficient statistic for $\underset{\sim}{\mu}$ when $\Sigma=\Sigma_{0}$ is known.
(b) Derive the sufficient statistic for Σ when $\underset{\sim}{\mu}=\underset{\sim}{\mu}{ }_{0}$.
(c) Check whether the derived sufficient statistic are unbiased estimators for the corresponding unknown parameters.
[21] Suppose that the distribution of the $m \times m$ random matrix A is Wishart $W_{m}(n, \Sigma)$, $\Sigma>0$. Let $A \& \Sigma$ be partitioned as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad \& \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

$A_{11} \& \Sigma_{11}$ are kx k, $A_{12} \& \Sigma_{12}$ are k x m-k, $A_{21} \& \Sigma_{21}$ are m-k x k and $A_{22} \& \Sigma_{22}$ are m-k x m-k. Find the distributions of $A_{11} \& A_{22}$.
[22] Let $\underset{\sim}{X}, \underset{\sim}{X}, \ldots, \underset{\sim}{X} n$ be a random sample from a population which is $N_{m}(\underset{\sim}{\mu}, \Sigma)$. Define the $n \times m$ data matrix as

$$
X=\left(\begin{array}{c}
\underset{\sim}{X} \\
\vdots \\
{\underset{\sim}{n}}_{\prime}^{\prime}
\end{array}\right)
$$

Prove that $n S_{n}=(X-\underset{\sim}{1} \underset{\sim}{\bar{X}})^{\prime}(X-\underset{\sim}{1} \underset{\sim}{\bar{X}})$.
[23] Suppose that the distribution of the $m \times m$ random matrix A is Wishart $W_{m}(n, \Sigma)$, $\Sigma>0$. Let Φ be an $m \times m$ symmetric matrix of full rank. Prove that

$$
E\left(\exp \left(\operatorname{tr} \frac{i}{2} A \Phi\right)\right)=\prod_{j=1}^{m}\left(1-i \lambda_{j}\right)^{-n / 2}
$$

where, $\lambda_{1}, \ldots, \lambda_{m}$ are the eigen values of $\Sigma^{1 / 2} \Phi \Sigma^{1 / 2}$.
[24] Let A be a Wishart $W_{m}(n, \Sigma)$. For a $k \times m$ non random matrix of full row rank, M, find the characteristic function of $M A M^{\prime}$.
[25] Let $\underset{\sim}{X}, \underset{\sim}{X} 2, \ldots, \underset{\sim}{X}$ be a random sample from a population which is $N_{m}(\underset{\sim}{\mu}, \Sigma)$.
Derive the distribution of

$$
\bar{\sim}_{\sim}^{\prime} S \underset{\sim}{\bar{X}} /{\underset{\sim}{x}}^{\overline{X^{\prime}}} \Sigma \underset{\sim}{\bar{X}} .
$$

[26] Let A be a Wishart $W_{m}(n, \Sigma)$. Find an unbiased estimator of Σ^{-1}.
[27] Let $\underset{\sim}{X}, \underset{\sim}{X}, \ldots, \underset{\sim}{X} \underset{n}{ }$ be a random sample from $N_{m}(\underset{\sim}{\mu}, \Sigma), \Sigma>0$. Define a transformation $\underset{\sim}{X} \rightarrow \underset{\sim}{Y}=A \underset{\sim}{X}+\underset{\sim}{\beta}, A$ is a $m \times m$ non singular matrix of constants and $\underset{\sim}{\beta}$ is a vector of constants. Show that Hotelling's T^{2} statistic for testing $H_{0}: \underset{\sim}{\mu}=\underset{\sim}{\mu} 0$ against $H_{A}: \underset{\sim}{\mu} \neq \underset{\sim}{\mu} \operatorname{\mu }_{0}$ based on $X=(\underset{\sim}{X}, \underset{\sim}{X}, \ldots, \underset{\sim}{X})$ and that based on $Y=(\underset{\sim}{Y}, \underset{\sim}{Y} 2, \ldots, \underset{\sim}{Y})$ are the same.
 random sample from $N_{P}\left(\underset{\sim}{\mu}{ }^{(2)}, \Sigma\right), \Sigma>0$.
(a)Under the condition that $\underset{\sim}{\mu}{\underset{\sim}{1)}}_{(1)}^{\underset{\sim}{\mu}}{ }^{(2)}$, find the distribution of $\left(\underset{\sim}{\bar{X}}-{\underset{\sim}{X}}_{2}\right)^{\prime} S_{p}^{-1}(\underset{\sim}{\bar{X}}-\underset{\sim}{\bar{X}} 2)$. Where, ${\underset{\sim}{X}}_{1}$ and $\underset{\sim}{\bar{X}} \bar{x}_{2}$ denote the sample mean vectors and S_{p} is the pooled sample covariance matrix.
(b) Derive the appropriate test statistic based on Hotelling’s T^{2} statistic for testing $H_{0}:{\underset{\sim}{\mu}}^{(1)}=\underset{\sim}{\mu}{ }^{(2)}$ against $H_{A}:{\underset{\sim}{\mu}}^{(1)} \neq \underset{\sim}{\mu}{ }^{(2)}$.
(c) Obtain $100(1-\alpha) \%$ confidence regions for $\underset{\sim}{\mu}{ }^{(1)}, \underset{\sim}{\mu}{ }^{(2)}$ and ${\underset{\sim}{\mu}}^{(1)}-\underset{\sim}{\mu}{ }^{(2)}$.
[29] Let $\underset{\sim}{X}, \underset{\sim}{X}, \ldots, \underset{\sim}{X} n$ be a random sample from a population which is $N_{2 m}(\underset{\sim}{\mu}, \Sigma), \Sigma>0$. Derive the testing procedure for testing $H_{0}: \mu_{i}=\mu_{i+m} ; i=1(1) m$ against H_{A} :at least one such relation does not hold.
[30] Let $\underset{\sim}{X}, \underset{\sim}{X}, \ldots, \underset{\sim}{X}$ be a random sample from $N_{m}(\underset{\sim}{\mu}, \Sigma), \Sigma=\operatorname{diag}\left(\sigma_{11}, \ldots, \sigma_{m m}\right)$. Obtain a simultaneous confidence interval for $\mu_{1}-\mu_{2}$ and $\mu_{1}+\mu_{2}$, such that the joint confidence is exactly $100(1-\alpha) \%$.
[31] Let $\underset{\sim}{X}, \underset{\sim}{X} 2, \ldots, \underset{\sim}{X}$ be a random sample from $N_{m}(\underset{\sim}{\mu}, \Sigma), \Sigma>0$. Using Bonferroni’s approach, construct simultaneous confidence intervals of confidence level at least 90% for $\mu_{1}-\mu_{m}$ and $\mu_{2}-\mu_{m-1}$ under the following scenarios;
(a) the two contrasts are given equal importance and
(b) importance of the contrast $\mu_{1}-\mu_{m}$ is three times that of the contrast $\mu_{2}-\mu_{m-1}$.

