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Module 1: Probability Essentials

Lecture 1 Introduction

In our everyday life, we encounter many systems that we feel should see improve-
ments. The system that we observe may be the planes hovering around airports
waiting to land while others waiting to take off, or may be the price movements
of a particular stock in a stock exchange, or may be speed of the internet in your
home, or may be production of some items in a manufacturing company. In order to
improve the behaviour of such systems, one needs to analyse them first by abstract-
ing their essential features. These are typical examples of systems whose behaviour
vary in time in a random manner and interest in studying them has never reduced
and will never be. The mathematical models that abstract the essential features of

such systems are known as stochastic processes or random processes.

In this module, we will briefly review the probability essentials that form back-
bone to the study of stochastic processes. Those who are familiar with the material
covered in this module may either skip this module entirely or gloss over the module
quickly to revise the concepts and get familiar with the notations used throughout

the course.

1 Probability Spaces

Probability theory is concerned with modelling of a phenomenon that behave in
an unpredictable manner. In probabilistic modelling, the first basic concept is that
of a ‘random experiment’, like observing outcome of tossing a coin or throwing a
dice or observing life length of device etc. In all such examples, we do not know
what is going to be the outcome. They are thus known as random experiments
which essentially means that we can only enumerate all possible outcomes of the
experiment but are not sure which one of them actually will happen. We abstract
all possible outcomes of a random experiment by a set Q2 and call it the sample space

of the experiment. The elements of (2 are called sample points or elementary events.

We are often interested in the study of set of sample points, rather than a single
sample point only. These are called as events of the experiment and the events

satisfy some consistency requirements among themselves. In its full generality, they
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form a collection known as a o-algebra (or o-field) over Q2 which is defined as below.
Definition 1.1. A nonempty collection F of subsets of 2 is called a o-algebra (over
Q) if F is closed under the operations of countable unions and complementations,

1.€.,

1. U2 A, € F whenever A, € F,n > 1, and

2. A° € F whenever A € F.

The pair (2, F) is called a measurable space.

Example 1.1. The largest o-field of subsets of a fized set €1 is the collection of all
subsets of 0, i.e., the power set P. The smallest o-field consists of the two sets ()
and ). These o-fields are sometimes called as trivial o-fields.

Example 1.2. Let Q) be an infinite set, and let F be the collection of all finite
subsets of (2. Then F does not contain ) and is not closed under complementation,

and so is not a o—algebra (or a o-field) on Q.

In the definition given above, if we replace the ‘countable union’ part by a ’finite
union’, then the collection is called as a field. It can be seen easily that each o-field on
Q is a field on 2, since, for example, the union of the finite sequence Ay, Ay, -+ , A, is
the same as the union of the infinite sequence Ay, Ay, - -+, A,, A,, A, - -+ . Similarly,
every finite field (a field with a finite number of elements) is a o-field too. But, in
general, a field may not be a o-field.

Example 1.3. Let A be a nonempty proper subset of Q, and let F = {0,Q, A, A°}.
Then F is the smallest o-field containing A. For if G is a o-field and A € G, then
by definition of a o-field, Q, 0, and A€ belong to G, hence F C G. But F is a o-ficld,
for if we form complements or unions of sets in F, we obtain sets in F. Thus F is
a o-field that is included in any o-field containing A, and the result follows.

Exercise 1.1. Let A, B be nonempty proper subsets of Q). Determine the smallest
o-field containing A and B. How many elements are there in it? FExtending the

idea, describe explicitly the smallest o-field containing a finite number of subsets

Al,AQ,"' ,An OfQ

Generalizing the idea of the previous example, one can talk about the smallest
o-field containing a class of sets. If C is a class of subsets of a set €2, the smallest o-

field containing the sets of C will be written as o(C), and will be called the minimal



MODULE 1: PROBABILITY ESSENTIALS 3

o-field over C or the o-field generated by C. And, C will be called a generator for
the o-field o(C).

Example 1.4. (Borel o-field) In probability theory, the o-field of interest is what is
known as the Borel o-field (especially in the case when @ = R). Denoted as B (or
B(R)), the Borel o-field over R is the o-field generated by the class of all intervals
of the form (a,b), a,b € R. A Borel set is an element of the Borel o-field.

Note that the class of open intervals is only one of the many generators of the
Borel o-field. And, though practically all the subsets of R that we encounter are

Borel sets, there exists non-Borel sets. But we will not worry about that.

The next idea concerns the measurement i.e. the probability of the events, which
we define below in an axiomatic way.
Definition 1.2. A function P : F — R is called a probability measure (or simply
probability) if

1.0<P(A) <1, VAe F,
2. P(Q) =1, and
3. Ay, Ay, -+ € F are mutually exclusive, then P(U2 A;) = > "2, P(A;).

The triplet (2, F, P) is called a probability space.

If you are familiar with measure theory, you can realize immediately that the
probability measure is a measure of total mass one. You should keep in mind the fact
that there is always an underlying probability space in every probabilistic modelling
problem. Sometimes it can be described easily and sometimes it may not be.
Example 1.5. In the case of throwing a die twice, Q = {(i,7) : i, = 1,2,...,6},
where i is the outcome of the first throw and j the outcome of the second throw. If
we take F = P then we get a particular probability space with probability measure

defined by say P(A) = %, A € F where |A| is cardinality of set A.

If we take F = {{(1,1)},{(1,1)}¢,Q,0}, then we get a different probability space.
2 Conditional Probability and Independence

Consider families with two children. What is the probability that a family has

two boys, given that it has one boy? The answer however is not % Here, Q =
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{BB,BG,GG,GB} and let H = {BB, BG,GB} be the event that the family has
at least one boy. Under the condition that family has one boy, H can be considered
as the new sample space and all outcomes are considered to be equally likely then
conditional probability of event A is P(A | H) = 3, where A is the event that the
family has two boys, and in that case P(A | H) = %
the following definition.

Definition 1.3. Given a probability space (Q, F, P), let B € F be some fized event
such that P(B) > 0, then the conditional probability of A € F given B (denoted by
P(A| B)) is equal to Pg?;];).

Theorem 1.1. Given (Q, F, P), consider a fited B € F such that P(B) > 0. Then

the function P(.| B) behaves like an ordinary probability measure, that is it satisfies

= % In general, we have

all the three axioms.

Proof. 1. P(A|B) >0 forany Ae F
2. PQQ|B)=1
3. If A; for i = 1,2..... is a sequence of mutually exclusive (disjoint) events then
P(UZ,A; | B) = Zizlp(A,- | B).

This is because

PUE(ANB) )N P(A;N B)

PUZA| B) = == TP~ 2o P B,

Also the original probability measure P on F actually is of the same form
where B = ).

O

We have the following theorem which is known as the theorem of total probabil-
ity.
Theorem 1.2. Let A; € F fori=1,2,... be a sequence of mutually exclusive and
exhaustive events such that P(A;) > 0 for all i. If B € F be any other event then

P(B) =" P(B|A)P(4).
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The proof of the above theorm is simple on noting that P(B) = P(BN Q) =
P(BN (U2, (4)) = P(U2, (AN B)) = > P(A;NB), since the A;,s are mutually
exclusive. Hence, P(B) =Y. P(B | A;))P(A;).

A very useful result is the following theorem.

Theorem 1.3. (Bayes theorem) Let A; € F fori = 1,2, ... be a sequence of mutually
exclusive and exhaustive events such that P(A;) > 0 for alli. If B€ F, P(B) >0

be any other event then

_ P(B|A)P(A)
PATB) = S~ BT a)P(a)

The theorem follows from the fact that P(A; | B) = %, and then using

total probability result.

Example 1.6. In a bolt factory machines M1, M2 and M3 manufacture respectively
25%, 35% and 40% of the total production. Of their output 5,4, 2 percent respectively
are defective bolts. A bolt is drawn from a day’s production and found to be defective.

What is the probability that it was manufactured by machine M3?

Solution: Let Ay, Ay and Az represent the events that a bolt selected at random is
manufactured by the machines M1, M2 and M3 respectively, and let B denote the
event of its being defective. It is given that P(A;) = 0.25, P(Ay) = 0.35, P(A3) =
0.40, P(B|A;) = 0.05, P(B|As) = 0.04, P(B|A3) = 0.02. Therefore, the probability
that a defective bolt selected at random is manufactured by machine M3 is computed

using Bayes’ rule as

P(A.|B) — P(A3)P(B|A;) (0.40)(0.02) 16
(4lB) = Z?:o P(A;)P(B|A;) N (0.25)(0.05) + (0.35)(0.04) + (0.40)(0.02) 69

Definition 1.4. Given a probability space (0, F, P), two events A and B are said
to be statistically independent or stochastically independent or (simply) independent
if
P(ANB)= P(A)P(B).
It can be easily shown that the above is the same as saying that if P(B) > 0

then A and B are independent if P(A | B) = P(A) and if P(B°) > 0 then A and B
are independent if P(A | B¢) = P(A).
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A is said to be independent of itself if P(A) is either 0 or 1.

Three events A;, Ay, Az are said to be independent if they are pairwise indepen-
dent and also P(A; N Ay N A;) = P(A1)P(Ay)P(A;).

The following is an example which illustrates that pairwise independence need
not imply independence of the events if the number of events is more than 2.
Example 1.7. Let Q = {wy,ws, ws,ws} be a sample and F be the power set of €.
Let all the outcomes in the sample space be equally probable, let Ay = {wy,ws}, Ay =
{ws, w3}, A3 = {ws,ws}, then P(A1 N Ay) = P(A)P(A;) = 3,P(Ay N A3) =
P(A))P(A3) = %, P(A1NA;3) = P(A1)P(A;) = % and P(A;NAyNAz) = P(0) = 0.
But P(A1)P(A3)P(As) = & and hence these three events are not statistically inde-

pendent although they are pairwise independent.

Another question which needs to be addressed is that if P(A; N Ay N As) =
P(A;)P(Ay)P(A3), then does it imply that the events are pairwise independent?
Again, the answer is no. To see how, repeat the above experiment with (2 having 8
elements such that A;, As, Az have four elements each and A; N Ay N A3 has one

element.

Similarly, if we have n events say Aj, As,...., A, then the A;’s are said to be

independent if they satisfy the following equalities.

1. P(A;NA;) = P(A;)P(A,) for all i < j, there are n¢, such pairs (i, 7).

2. P(AinAjNAy) = P(A)P(A;)P(Ay) for all i < j < k, there are n¢, such
triplets (i, j, k).

3. P(A NAyN ... A) = P(A)P(As)... P(A,)

Thus, in total one has to check 2" — n — 1 above identities.



