
Module 1: Mathematical Preliminaries

This introductory module comprises of four lectures. In these four lectures, we introduce

to the readers some basic concepts from multivariable calculus and some essential results

from ordinary differential equations(ODEs). Some geometrical concepts necessary for the

subsequent modules are also discussed.

Module 1 is organised as follows. In Lecture 1, we review some basic definitions and

results from multivariable calculus. In Lecture 2, we discuss some essential formulas for

solving linear first-order and second-order (with constant coefficients only) ODEs. In

addition, we review the basic existence and uniqueness theorems for initial value problem

(IVP) for ODEs and systems of ODEs. In Lecture 3, we discuss some geometrical concepts

like surfaces, normals and integral curves and surfaces of vector fields. Finally, Lecture 4

is devoted to methods for finding the integral curves of a vector field by solving systems

of ODEs.
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Lecture 1 A Review of Multivariable Calulus

In this lecture, we recall some basic concepts from multivariable calculus. The concepts

of limits, continuity, partial derivatives, directional derivatives, chain rules, tangent plane

and normals are discussed.

For any (x, y), (x0, y0) ∈ R2, let us denote

d((x, y), (x0, y0)) =
√

(x− x0)2 + (y − y0)2

for the distance between two points (x, y) and (x0, y0). A disk Dr(x0, y0) of radius r

centered at (x0, y0) is defined as

Dr(x0, y0) = {(x, y) | d((x, y), (x0, y0)) < r} .

The concept of limit now can be defined by the same ϵ, δ technique as in one variable

calculus.

DEFINITION 1. (The ϵ, δ definition of limit) Let f(x, y) be a real-valued function of

two variables defined on a disk Dr(x0, y0), except possibly at (x0, y0). Then

lim
(x,y)→(x0,y0)

f(x, y) = l if for every ϵ > 0 there is a δ > 0 such that

|f(x, y)− l| < ϵ whenever 0 < d((x, y), (x0, y0)) < δ.

Definition 1 means that the distance between f(x, y) and l can be made arbitrarily

small by making the distance from (x, y) to (x0, y0) sufficiently small (but not 0). That

is, if any small interval (l − ϵ, l + ϵ) is given around l, then we can find a disk Dδ(x0, y0)

with center (x0, y0) and radius δ > 0 such that f maps all the points in Dδ(x0, y0) [except

possibly (x0, y0)] into the interval (l − ϵ, l + ϵ).

The definition of a limit can be extended to functions of three or more variables. Using

vector notation the definition can be written in a compact form as follows:

Let f : Dr(x0) ⊂ Rn → R. Then

lim
x→x0

f(x) = l if for every ϵ > 0 there is δ > 0 such that

|f(x)− l| < ϵ whenever 0 < d(x,x0) < δ.

DEFINITION 2. (Continuity) Let f(x, y) be a real-valued function of two variables de-

fined in a disk Dr(x0, y0) with center (x0, y0). Then

f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).
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We say f is continuous inDr(x0, y0) if f is continuous at every point (x, y) inDr(x0, y0).

The intuitive meaning of continuity is that if the point (x, y) changes by a small amount,

then the value of f(x, y) changes by a small amount. Geometrically, this means that a

surface that is the graph of a continuous function has no holes or breaks.

DEFINITION 3. (Partial derivatives) Let f : Dr(x0, y0) → R. The partial derivatives

of f are the functions fx and fy defined by

fx(x, y) := lim
h→0

f(x+ h, y)− f(x, y)

h
,

fy(x, y) := lim
h→0

f(x, y + h)− f(x, y)

h
.

To find fx, treat y as a constant and differentiate f(x, y) with respect to x. Similarly,

to find fy, treat x as a constant and differentiate f(x, y) with respect to y. If z = f(x, y)

we write

fx =
∂f

∂x
=
∂z

∂x
= zx,

fy =
∂f

∂y
=
∂z

∂y
= zy.

Partial derivatives can also be defined for functions of three or more variables. In general,

if z is a function of n variables, z = f(x1, x2, . . . , xn), its partial derivative with respect

to the ith variable xi is

∂z

∂xi
:= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
.

We also write

zxi =
∂z

∂xi
=

∂f

∂xi
= fxi .

Since the partial derivatives are themselves functions, we can take their partial derivatives

to obtain higher derivatives. If z = f(x, y), we may compute

fxx(x, y) =
∂

∂x

(
∂z

∂x

)
=
∂2z

∂x2
, fyy(x, y) =

∂

∂y

(
∂z

∂y

)
=
∂2z

∂y2
,

fxy(x, y) =
∂

∂y

(
∂z

∂x

)
=

∂2z

∂y∂x
, fyx(x, y) =

∂

∂x

(
∂z

∂y

)
=

∂2z

∂x∂y
.

In general, fxy ̸= fyx. However, the following theorem gives condition under which we can

assert that fxy = fyx.
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THEOREM 4. Let f : Dr(x0, y0) → R. If fxy and fyx are both continuous at (x0, y0),

then

fxy(x0, y0) = fyx(x0, y0).

DEFINITION 5. (Chain rule) Let z1 = f1(x1, . . . , xn), . . . , zm = fm(x1, . . . , xn) be m

functions of n variables, and let x1 = g1(t1, . . . , tk), . . . , xn = gn(t1, . . . , tk) be n functions

of k variables, all with continuous partial derivatives.

Consider the z′is as functions of the tj’s by

zi = fi(g1(t1, . . . , tk), . . . , gn(t1, . . . , tk)).

Then
∂zi
∂tj

=
∂zi
∂x1

∂x1
∂tj

+
∂zi
∂x2

∂x2
∂tj

+ · · ·+ ∂zi
∂xn

∂xn
∂tj

.

DEFINITION 6. If z = f(x, y) is a function of two variables, its gradient vector field ∇f
is defined by

∇f(x, y) := (fx(x, y), fy(x, y)) = (
∂z

∂x
,
∂z

∂y
).

If u = f(x, y, z) is a function of three variables, its gradient vector field ∇f is defined by

∇f(x, y, z) = (fx(x, y, z), fy(x, y, z), fz(x, y, z)) = (
∂u

∂x
,
∂u

∂y
,
∂u

∂z
).

DEFINITION 7. (Implicit differentiation) If y = f(x) is a function satisfying the

relation z = F (x, y) = 0, then

dy

dx
= −Fx(x, f(x))

Fy(x, f(x))
. (1)

Differentiating F (x, y) = 0 with respect to x using the chain rule gives

∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= 0

=⇒ ∂F

∂x
+
∂F

∂y

dy

dx
= 0,

which yields (1).

DEFINITION 8. (Directional derivatives) The directional derivative of f at (x0, y0) in

the direction of a unit vector u = (u1, u2) is

Duf(x0, y0) := lim
h→0

f(x0 + hu1, y0 + hu2)− f(x0, y0)

h

if this limit exists.
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Note that if u = (1, 0) then Duf = fx and if u = (0, 1), then Duf = fy. In other

words, the partial derivatives of f with respect to x and y are just special cases of the

directional derivatives.

THEOREM 9. If f(x, y) is a differentiable function of x and y, then f has a directional

derivative in the direction of any unit vector u = (u1, u2) and

Duf(x, y) = fx(x, y)u1 + fy(x, y)u2.

The directional derivative can be written as

Duf(x, y) = fx(x, y)u1 + fy(x, y)u2

= (fx(x, y), fy(x, y)) · (u1, u2)

= ∇f(x, y) · u. (2)

This expresses the directional derivative in the direction of u as the scalar projection

of the gradient vector onto u. From (2), we have

Duf(x, y) = ∇f(x, y) · u

= |∇f ||u| cos θ

= |∇f | cos θ,

where θ is the angle between ∇f and u. The maximum value of cos θ is 1 and this occurs

when θ = 0. Therefore, the maximum value of Duf(x, y) is |∇f | and it occurs when θ = 0

i.e., when u has the same direction as ∇f .

Similarly, the directional derivative of functions of three variables with unit vector

u = (u1, u2, u3) can be written as

Duf(x, y, z) = ∇f(x, y, z) · u.

We now introduce the concept of differentiability for functions of several variable, let’s

first recall the definition of differentiability in one variable case.

Let D be an open subset R. The function f : D → R is said to be differentiable at

x0 ∈ D if

lim
x→x0

f(x)− f(x0)

x− x0

exists. The value of this limit is called the derivative of f at x0 and is denoted by f ′(x0).
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The above definition may be restated as follows: The function f : D → R is differen-

tiable at x0 ∈ D if there is a number f ′(x0) such that

lim
x→x0

|f(x)− f(x0)− f ′(x0)(x− x0)|
|x− x0|

= 0. (3)

Any real number a0 determines a linear transformation L : R → R defined by

Lx = a0x.

In particular, f ′(x0) determines a linear transformation L : R → R given by Lx = f ′(x0)x.

Therefore, with this linear transformation, we may rewrite (3) as

lim
x→x0

|f(x)− f(x0)− L(x− x0)|
|x− x0|

= 0. (4)

We now use (3) to define differentiability of a function f : Rn → Rm.

DEFINITION 10. (Differentiability) Let D ⊂ Rn be an open subset and let f : D → Rm.

We say that f is differentiable at x0 ∈ D if there is a linear transformation L : Rn → Rm

such that

lim
x→x0

∥f(x)− f(x0)− L(x− x0)∥
∥x− x0∥

= 0. (5)

The linear transformation L of (5) is called the derivative of f at x0. We denote it by

f ′(x0).

We say that f is differentiable in D if it is differentiable at each every point of D.

DEFINITION 11. (Jacobian matrix) Let f : D ⊂ Rn → Rm is defined by

f(x) = (f1(x), . . . , fm(x)),

where fi : D → R, 1 ≤ i ≤ m. For each x ∈ D, we define the Jacobian matrix of f at x

by

Jf (x) := (aij),

where aij = (∂fi/∂xj)(x), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

EXAMPLE 12.

Let f : R2 → R3 be given by

f(x1, x2) = (x21, x1x2, x
2
2).

Here, f1(x1, x2) = x21, f2(x1, x2) = x1x2, f3(x1, x2) = x22. Then

∂f1
∂x1

= 2x1,
∂f2
∂x1

= x2,
∂f3
∂x1

= 0.
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∂f1
∂x2

= 0,
∂f2
∂x2

= x1,
∂f3
∂x2

= 2x2

Therefore,

Jf (x1, x2) =


2x1 0

x2 x1

0 2x2

 .
The following theorem gives a formula for computing derivative.

THEOREM 13. (Computing derivative) Let D be an open subset of Rn and f : D →
Rm be defined by

f(x) = (f1(x), . . . , fm(x)),

where fi : D → R, 1 ≤ i ≤ m. If f is differentiable at a point x0 in D, then each of the

partial derivatives (∂fi/∂xj)(x0) exists, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Furthermore,

f ′(x0) = Jf (x0).

Note that the linear transformation L is defined by the Jacobian matrix of f at x0.

In particular, for m = 1, we have

L = f ′(x0) = ∇f(x0).

The following theorem gives the sufficient condition for differentiability of f .

THEOREM 14. (Sufficient condition for differentiability) Let D ⊂ Rn be an open

set and f : D → Rm be defined by

f(x) = (f1(x), . . . , fm(x)),

where fi : D → R, 1 ≤ i ≤ m. Suppose that (∂fi/∂xj)(x0) exists and continuous on D,

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then f is differentiable on D.

We shall conclude this lecture by stating some results on maxima and minima in the

case of a function of several variables. We restrict our discussion to functions of two

variables only.

DEFINITION 15. (Maxima and Minima) Let f(x, y) be a function of two variables. A

point (x0, y0) is a local minimum point for f if there is a disk Dδ(x0, y0) about (x0, y0)

such that

f(x, y) ≥ f(x0, y0) for all (x, y) ∈ Dδ(x0, y0).

The number f(x0, y0) is called a local minimum value.
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Similarly, if there is a disk Dδ(x0, y0) about (x0, y0) such that

f(x, y) ≤ f(x0, y0) for all (x, y) ∈ Dδ(x0, y0)

then the point (x0, y0) a local maximum point for f .

A point which is either a local maximum or minimum point is called a local extremum.

The following is the analog in two variables of the first derivative test for one variable.

First Derivative Test:

If (x0, y0) is a local extremum of f and the partial derivatives of f exist at (x0, y0), then

fx(x0, y0) = fy(x0, y0) = 0.

Such point (x0, y0) is also called a critical point of f .

Second Derivative Test:

Let f(x, y) have continuous second-order partial derivatives, and suppose that (x0, y0) is

a critical point for f . Then

fx(x0, y0) = 0 and fy(x0, y0) = 0.

Let A = fxx(x0, y0), B = fxy(x0, y0), and C = fyy(x0, y0). Then the following statements

are true.

(a) If A > 0, AC −B2 > 0 then (x0, y0) is a local minimum.

(b) If A < 0, AC −B2 > 0 then (x0, y0) is a local maximum.

(c) If AC −B2 < 0 then (x0, y0) is a saddle point.

(d) If AC −B2 = 0 then the test is inconclusive.

Practice Problems

1. Show that lim(x,y)→(0,0)
∂
∂x

√
x2 + y2 does not exist.

2. Using ϵ and δ definition prove that f(x, y) = |x| is continuous at (0, 0).

3. Let

f(x, y) =

{
xy(x2−y2)
x2+y2

, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

(a) If (x, y) ̸= (0, 0), compute fx and fy.

(b) What is the value of f(x, 0) and f(0, y)?

(c) Show that fx(0, 0) = 0 = fy(0, 0).

(d) Show that fyx(0, 0) = 1 and fxy(0, 0) = −1.

(e) What went wrong? why are the mixed partial not equal?
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4. Find the derivative of the function f : R2 → R2 defined by

f(x, y) = (x2 + xy, x− y2).

5. Find the maxima, minima and saddle points of f(x, y) = (x2 − y2)e(−x2−y2)/2.
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