Module 9

Problem Sheet

Q1. Let Y be Bernoulli distributed random variable with parameter p. The process $\left\{Z_{n}, n=0,1, \ldots\right\}$ starts at time 0 with one ancestor. $Z_{0}=1$. At time $n=1$ this ancestor dies producing a random number of descendants $Z_{1}=Y_{1}^{(0)}$ where $Y_{1}^{(0)}$ have the same distribution as Y. Each descendant behaves independently of the others living only until $n=2$ and being then replaced by his own descendants. This process continues at $n=3,4, \ldots$. The random variables $Y_{j}^{(n)}$ have the same distribution as Y. Thus Z_{n+1} is the number of descendants in the $(n+1)$ th generation produced by Z_{n} individuals of generation n. Find the probability of eventual extinction for this branching process.

Q2. Consider the discrete branching process $\left\{Z_{n}, n=0,1, \ldots\right\}$. Let $\mu=E\left(Z_{1}\right)$ and $\sigma^{2}=\operatorname{Var}\left(Z_{1}\right)$. Prove that,

$$
\operatorname{Var}\left(Z_{n}\right)= \begin{cases}\frac{\mu^{n-1}\left(\mu^{n}-1\right) \sigma^{2}}{\mu-1}, & \mu \neq 1 \\ n \sigma^{2} & \mu=1\end{cases}
$$

Q3. Consider the Galton - Watson process $\left\{Z_{n}, n=0,1,2, \ldots\right\}$ with offspring distribution $\left\{p_{k}\right\}$ where $p_{k}=b p_{k-1}, k=1,2, \ldots$. Let $H_{n}(s)$ be the probability generating function of Z_{n}. Prove that,

$$
H_{n}(s)=\frac{n p-(n p+p-1) s}{1-p+n p-n p s}
$$

Q4. Let $Z(t)$ be number of particles at time t. Each particle lives random time which is exponential distributed and then splits into two particles. i.e., it follows Yule process. Thus $\{Z(t), t \geq 0\}$ is a Markov branching process. Find the probability generating function for $P_{1 j}(t), \phi(t ; s)$.

Q5. Let $Z(t)$ be number of particles at time t. In the above problem, assume that simple birth death process with rates $n \lambda$ and $n \mu$ for birth and death respectively, when the process is in state n. i.e., it follows birth and death process. Thus $\{Z(t), t \geq 0\}$ is a Markov branching process. Find the probability generating function for $P_{1 j}(t), \phi(t ; s)$.

Answers to Problem Sheet

Ans 1: Since Y is Bernoulli distributed random variable, we have the probability generating function of Y, denoted by $H(t)$ is

$$
H(t)=p t+(1-p)
$$

We know that the probability generating function of the random variables $Z_{n} \mathrm{~s}$ satisfy the following recurrence relations

$$
H_{1}(t)=H(t) ; \quad H_{n+1}(t)=H\left(H_{n}(t)\right), n=1,2, \ldots
$$

Hence, we have

$$
d_{n+1}=H_{n+1}(0)=H\left(H_{n}(0)\right)=H\left(d_{n}\right) .
$$

Here,

$$
\begin{aligned}
d_{1} & =H\left(d_{0}\right)=H(0)=1-p \\
d_{2} & =H\left(d_{1}\right)=H(1-p)=1 p^{2} \\
d_{3} & =H\left(d_{2}\right)=H\left(1-p^{2}\right)=1 p^{3}
\end{aligned}
$$

One can show using induction,

$$
d_{n}=1 p^{n}, \quad n=0,1, \ldots
$$

Taking the limit as n tends to infinity, we get the probability of eventual extinction

$$
\lim _{n \rightarrow \infty} d_{n}=1
$$

Ans 2: We know that

$$
H_{n}(s)=H_{n-1}(H(s))
$$

Differentiating the above equation with respect to s gives

$$
\begin{equation*}
H^{\prime}(s)=H_{n-1}^{\prime}(H(s)) H^{\prime}(s) \tag{1}
\end{equation*}
$$

Putting $s=0$, and writing the mean of the nth generation as μ_{n}, yields

$$
\mu_{n}=\mu_{n-1} \mu
$$

Hence, applying the above equation recursively, we get

$$
\mu_{n}=\mu^{n}
$$

If we differentiate (1) with respect to s, we obtain

$$
H^{\prime \prime}(s)=H_{n-1}^{\prime \prime}(H(s))\left(H^{\prime}(s)\right)^{2}+H_{n-1}^{\prime}(H(s)) H^{\prime \prime}(s)
$$

Putting $s=0$, and using σ_{n}^{2} for the variance at the nth generation, we get

$$
\sigma_{n}^{2}=\mu^{2} \sigma_{n-1}^{2}+\mu_{n-1} \sigma^{2}=\mu^{2} \sigma_{n-1}^{2}+\mu^{n-1} \sigma^{2}
$$

Applying the above equation recursively, we obtain

$$
\sigma_{n}^{2}=\left(\mu^{n-1}+\mu^{n}+\ldots+\mu^{2 n-2} \sigma^{2}\right)=\frac{\mu^{n-1}\left(\mu^{n}-1\right)}{\mu-1} \sigma^{2}, \quad \mu \neq 1
$$

If $\mu=1$, we obtain

$$
\sigma_{n}^{2}=n \sigma^{2}, \quad \mu=1
$$

Ans 3: Since

$$
\begin{gathered}
p_{k}=b p_{k-1}, k=1,2, \ldots \\
p_{0}=1-\left(P_{1}+p_{2}+\ldots\right)=\frac{1-b-p}{1-p} .
\end{gathered}
$$

We get

$$
H(s)=1-\frac{b}{1-p}+\frac{b s}{1-p s} \text { and } \mu=\frac{b}{(1-p)^{2}}
$$

For any two points u, v, we have

$$
\begin{equation*}
\frac{H(s)-H(u)}{H(s)-H(v)}=\frac{s-u}{s-v} \frac{1-p v}{1-p u} \tag{2}
\end{equation*}
$$

The equation $H(s)=s$ has roots s_{0} and 1. If $\mu>1$, then $s_{0}<1$; if $\mu=1, s_{0}=1$; if $\mu<1, s_{0}>1$.
If we take $u=s_{0}$ and $v=1$ then for $\mu \neq 1$ the above equation becomes

$$
\frac{1-p}{1-p s_{0}}=\lim _{s \rightarrow 1} \frac{\left(\frac{H(s)-s_{0}}{s-s_{0}}\right)}{\left(\frac{H(s)-1}{s-1}\right)}=\frac{1}{\mu}
$$

Hence equation (2) becomes

$$
\frac{H(s)-s_{0}}{H(s)-1}=\frac{s-s_{0}}{\mu(s-1)}
$$

Iterating the above equation, we obtain

$$
\frac{H_{n}(s)-s_{0}}{H_{n}(s)-1}=\frac{s-s_{0}}{\mu^{n}(s-1)}
$$

which can be solved explicitly for $H_{n}(s)$. After simplifications, we get

$$
H_{n}(s)=1-\mu^{n}\left(\frac{1-s_{0}}{\mu^{n}-s_{0}}\right)+\frac{\mu^{n}\left(\frac{1-s_{0}}{\mu^{n}-s_{0}}\right)^{2} s}{1-\left(\frac{\mu^{n}-1}{\mu^{n}-s_{0}}\right) s}, \quad \mu \neq 1
$$

If $\mu=1$, then $b=(1-p)^{2}$ and $s_{0}=1$. Then

$$
H(s)=\frac{p-(2 p-1) s}{1-p s}
$$

which can be iterated to yield

$$
H_{n}(s)=\frac{n p-(n p+p-1) s}{1-p+n p-n p s}
$$

Ans 4: Given $a_{2}=1$, define

$$
f(s)=\sum_{k} a_{k} s^{k}=s^{2}
$$

Now, define $u(s)=a(f(s)-s)$. From Theorem 5, we get

$$
\frac{\partial \phi(t ; s)}{\partial t}=a\left(\phi^{2}(t ; s)-\phi(t ; s)\right) \text { and } \phi(0 ; s)=s
$$

After solving the above partial differential equation, we obtain

$$
\phi(t ; s)=\frac{s e^{-a t}}{1-\left(1-e^{-a t}\right) s}
$$

If instead of splitting into two particles each particle splits into exactly k particles $(k>2)$, then the generating function is given by

$$
\phi(t ; s)=\frac{s e^{-a t}}{\left[1-\left(1-e^{-a(k-1) t}\right) s^{k-1}\right]^{1 /(k-1)}}
$$

Ans 5: Given $a=\lambda+\mu$ and $f(s)=\frac{\mu+\lambda s^{2}}{a}$. Hence,

$$
\frac{\partial \phi(t ; s)}{\partial t}=\lambda \phi^{2}(t ; s)-(\lambda+\mu) \phi(t ; s)+\mu \text { and } \phi(0 ; s)=s
$$

After solving the above partial differential equation, we obtain

$$
\phi(t ; s)=\frac{\mu(s-1)-e^{(\mu-\lambda) t}(\lambda s-\mu)}{\lambda(s-1)-e^{(\mu-\lambda) t}(\lambda s-\mu)}
$$

