## Problem Sheet

Q1. Let $\{N(t) ; t \geq 0\}$ be a Poisson process with parameter $\lambda$.
(a) Find the distribution of the current life time $\delta_{t}$ and total life time $\beta_{t}$.
(b) Prove that the joint distribution of $\nu_{t}$ and $\delta_{t}$ is given by

$$
P\left(\nu_{t}>x, \delta_{t}>y\right)= \begin{cases}e^{-\lambda(x+y)}, & x>0,0<y<t \\ 0, & \text { if } y \geq t\end{cases}
$$

Q2. Show that the renewal function corresponding to the lifetime whose probability density function $f(x)=\lambda^{2} x e^{-\lambda x}, x \geq 0$ is $M(t)=\frac{\lambda t}{2}-\frac{1-e^{-2 \lambda t}}{4}$.

Q3. Let $X_{1}, X_{2}, \ldots$ be the inter occurrence times in a renewal process. Suppose that $P\left(X_{i}=1\right)=\frac{1}{3}$ and $P\left(X_{i}=2\right)=\frac{2}{3}, i=1,2, \ldots$ Let $N_{n}$ be the renewals upto discrete time $n$. Compute $P(N(1)=k), P(N(2)=k), P(N(3)=k)$.

## Answers to Problem Sheet

Ans 1: (a) Define:
Current Life time $\delta_{t}=t-S_{N(t)}$
Residual Life time $\nu_{t}=S_{N(t)+1}-t$
Total Life time $\beta_{t}=\delta_{t}+\nu_{t}$
Both current and residual life time are exponentially distributed since for fixed $\mathrm{t}, N(t) \sim P(\lambda t)$.
Hence total life time is Erlang distribution with parameter $(2, \lambda)$.
(b) $P\left(\nu_{t}>x, \delta_{t}>y\right)=P($ No renewals occur in the time interval $(t-y, t+x])$

Since the time to renewal is exponentially distributed, therefore the probability of renewal shall be $e^{-\lambda(x+y)}$, i.e.

$$
P\left(\nu_{t}>x, \delta_{t}>y\right)= \begin{cases}e^{-\lambda(x+y)}, & x>0,0<y<t \\ 0, & \text { if } y \geq t\end{cases}
$$

Ans 2: We have $M(t)=E(N(t))$ renewal function.
Also $\quad M(t)=\sum_{n=1}^{\infty} F_{n}(t)$ where $F_{n}(t)$ is cumulative distribution function of $S_{n}$.

Hence $\frac{d M(t)}{d t}=\sum_{n=1}^{\infty} f_{n}(t)$ where $f_{n}(t)$ is the probability density function of $S_{n}$.
Given that $X_{n} \sim G(2, \lambda)$ i.e. gamma distribution.
Hence $S_{n}$ being sum $n$ independent Gamma distributed random variables is again gamma distribution $G(2 n, \lambda)$.

Hence $\quad f_{n}(x)=\frac{\lambda^{2 n} x^{2 n-1} e^{-\lambda x}}{(2 n-1)!}$.

$$
\text { Now } \begin{aligned}
\frac{d M(t)}{d t} & =\sum_{n=1}^{\infty} \frac{\lambda^{2 n} t^{2 n-1} e^{-\lambda t}}{(2 n-1)!} \\
& =\lambda e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{2 n-1}}{(2 n-1)!} \\
= & \lambda e^{-\lambda t}\left(\frac{e^{\lambda t}-e^{-\lambda t}}{2}\right) \\
& =\frac{\lambda}{2}\left(1-e^{-2 \lambda t}\right)
\end{aligned}
$$

Hence $M(t)=\int_{0}^{t} \frac{d M(t)}{d t} d t=\int_{0}^{t} \frac{\lambda}{2}\left(1-e^{-2 \lambda t}\right) d t=\frac{\lambda t}{2}-\frac{1-e^{-2 \lambda t}}{4}$.

Ans 3: We know $P(N(t)=k)=F_{k}(t)-F_{k+1}(t)$ where $F_{k}(t)=P\left[S_{k} \leq t\right]$ and $S_{k}=X_{1}+\cdots+X_{k}$. Therefore, we determine the distribution of $S_{k}$ :

| $S_{k}$ | $P\left(S_{k}=k\right)$ |
| :---: | :---: |
| $k$ | $\left(\frac{1}{3}\right)^{k}$ |
| $k+1$ | $\binom{k}{1}\left(\frac{1}{3}\right)^{k-1}\left(\frac{2}{3}\right)$ |
| $k+2$ | $\binom{k}{2}\left(\frac{1}{3}\right)^{k-2}\left(\frac{2}{3}\right)^{2}$ |
| $\vdots$ | $\vdots$ |
| $2 k$ | $\left(\frac{2}{3}\right)^{k}$ |

Hence $S_{k} \sim B\left(k, \frac{2}{3}\right)$. Accordingly,
(a) $P[N(1)=k]=F_{k}(1)-F_{k+1}(1)$

$$
\begin{gathered}
F_{k}(1)=P\left[S_{k} \leq 1\right]= \begin{cases}\frac{1}{3}, & k=1 \\
0, & \text { otherwise }\end{cases} \\
F_{k+1}(1)=P\left[S_{k+1} \leq 1\right]=0
\end{gathered}
$$

Hence

$$
P[N(1)=k]= \begin{cases}\frac{1}{3}, & k=1 \\ 0, & \text { otherwise }\end{cases}
$$

(b) $P[N(2)=k]=F_{k}(2)-F_{k+1}(2)$

$$
\begin{gathered}
F_{k}(2)=P\left[S_{k} \leq 2\right]=P\left[X_{1}=1 \text { or }\left(X_{1}=1, X_{2}=1\right) \text { or } X_{1}=2\right]=\frac{10}{9} \\
F_{k+1}(2)=P\left[S_{k} \leq 2\right]=\left(\frac{1}{3}\right)^{2}
\end{gathered}
$$

Hence $P[N(2)=k]=1$.
(c) $P[N(3)=k]=F_{k}(3)-F_{k+1}(3)$

$$
\begin{gathered}
F_{k}(3)=P\left[S_{k} \leq 3\right]=\frac{43}{27} \\
F_{k+1}(3)=P\left[S_{k+1} \leq 3\right]=\frac{16}{27}
\end{gathered}
$$

Hence $P[N(3)=k]=1$.

