Problem Sheet

1. Show that an i.i.d sequence of continuous random variable with common probability density function f is strictly stationary.
2. Find(under certain conditions) whether the stochastic process $\{X(t), t \in T\}$ with probability distribution given by:
$P(X(t)=n)=\left\{\begin{array}{cl}\frac{(a t)^{n-1}}{(1+a t)^{n+1}}, & n=1,2, \ldots \\ \frac{a t}{1+a t}, & n=0\end{array}\right\}$
is stationary.
3. Let $X(t)=A_{0}+A_{1} t+A_{2} t^{2}$ where $A_{i}^{\prime} s$ are uncorrelated random variables with mean 0 and variance 1. Find the mean function and covariance function of $X(t)$.
4. Let $Y_{n}=a_{0} X_{n}+a_{1} X_{n-1}, n=1,2, \ldots$ where a_{0}, a_{1} are constants and X_{0}, X_{1}, \ldots, are i.i.d. random variables with mean 0 and variance σ^{2}.
(a) Is $\left\{Y_{n}, n \geq 1\right\}$ covariance stationary?
5. Consider autoregressive process of order 1, i.e.

$$
X_{t}=c+\phi X_{t-1}+\varepsilon_{t}
$$

where ε_{t} is white noise with mean 0 and variance $\sigma_{\varepsilon}{ }^{2}, c$ is a constant.Assume that the mean of the random variable X_{t} is identical for all values of t, denoted by μ. Show that the process is wide sense stationary for $|\phi|<1$.
6. Let $\{N(t), t \geq 0\}$ be a Poisson Process. Prove or disprove that $\{X(t)=N(t+L)-N(t), t \geq 0\}$, where L is a positive constant, is covariance or wide-sense stationary.
7. Let Z_{1} and Z_{2} be two independent normal random variables with mean 0 and variance σ^{2}. Define $X(t)=Z_{1} \cos (\lambda t)+Z_{2} \sin (\lambda t)$. Then show that $\{X(t), t \in T\}$ is a second order stationary process.

Answers to Problem Sheet

Ans 1. Let X_{1}, X_{2}, \ldots, be an i.i.d. sequence of continuous random variables.
Let n be any positive integer.
Let $m \in Z$ such that $n+m>0$.
Then $P\left(X_{1+m}, X_{2+m}, \ldots, X_{n+m}\right) \in B$ and its distribution is:
$\iint \ldots \int_{B} f\left(x_{1+m}\right) f\left(x_{2+m}\right) \ldots f\left(x_{n+m}\right) d x_{1+m} d x_{2+m} \ldots d x_{n+m}$
Since $X_{i}^{\prime} s$ are i.i.d. random variables and $x_{1+m}, x_{2+m} \ldots x_{n+m}$ are just dummy variables of integration, we may replace them by $x_{1}, x_{2}, \ldots, x_{n}$.

Hence above integral is equal to
$\int \ldots \int_{B} f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}$
which is independent of m and hence the process is strictly stationary.

Ans 2. Given $P[X(t)=n]=\left\{\begin{array}{cc}\frac{(a t)^{n-1}}{(1+a t)^{n+1}}, & n=1,2, \ldots \\ \frac{a t}{1+a t}, & n=0\end{array}\right\}$
(i) $E[X(t)]=\sum_{0}^{\infty} n P(X(t)=n)=\sum_{1}^{\infty} \frac{n(a t)^{n-1}}{(1+a t)^{n+1}}$

$$
=\frac{1}{(1+a t)^{2}} \sum_{1}^{\infty} n\left[\frac{a t}{1+a t}\right]^{n-1}=\frac{1}{(1+a t)^{2}} \cdot(1+a t)^{2}=1
$$

(ii) $E\left[X^{2}(t)\right]=\sum n^{2} \frac{(a t)^{n-1}}{(1+a t)^{n+1}}=\frac{1}{(1+a t)^{2}} \sum_{1}^{\infty} n^{2}\left(\frac{a t}{1+a t}\right)^{n-1}$

$$
=\frac{1}{(1+a t)^{2}} \cdot(1+2 a t)
$$

Ans 3. Let $X(t)=A_{0}+A_{1} t+A_{2} t^{2}$ where
$E\left(A_{i}\right)=0 \forall i, \operatorname{Var}\left(A_{i}\right)=1 \forall i$ and $\operatorname{Cov}\left(A_{i}, A_{j}\right)=0 \forall i \neq j$.
(a) Mean function of $X(t)$:
$E[X(t)]=E\left[A_{0}+A_{1} t+A_{2} t^{2}\right]=E\left[A_{0}\right]+t E\left[A_{1}\right]+t^{2} E\left[A_{2}\right]=0$
(b) Covariance function of $X(t)$:

$$
\begin{aligned}
\operatorname{Cov}\left(X\left(t_{1}\right), X\left(t_{2}\right)\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]-E\left[X\left(t_{1}\right)\right] E\left[X\left(t_{2}\right)\right] \\
& =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
& =E\left[\left(A_{0}+A_{1} t_{1}+A_{2} t_{1}^{2}\right)\left(A_{0}+A_{1} t_{2}+A_{2} t_{2}^{2}\right)\right] \\
& =E\left[A_{0}^{2}+A_{0} A_{1} t_{2}+A_{0} A_{2} t_{2}^{2}+A_{1} A_{0} t_{1}+A_{1}^{2} t_{1} t_{2}+A_{1} t_{1} t_{2}^{2}+A_{0} A_{2} t_{1}^{2}+A_{1} A_{2} t_{1}^{2} t_{2}\right.
\end{aligned}
$$

Now, as $\operatorname{Cor}\left(A_{i}, A_{j}\right)=0 \forall i \neq j$, therefore:
$E\left[A_{i} A_{j}\right]-E\left[A_{i}\right] E\left[A_{j}\right]=0 \forall i \neq j, \Rightarrow E\left[A_{i} A_{j}\right]=E\left[A_{i}\right] E\left[A_{j}\right]$ and $\operatorname{Var} A_{i}=E\left[A_{i}^{2}\right]$
Hence

$$
\begin{aligned}
\operatorname{Cov}\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)= & E\left[A_{0}^{2}\right]+t_{2} E\left[A_{0}\right] E\left[A_{1}\right]+t_{2}^{2} E\left[A_{0}\right] E\left[A_{2}\right]+t_{1} E\left[A_{1}\right] E\left[A_{0}\right]+t_{1} t_{2} E\left[A_{1}^{2}\right]+t_{1} t_{2}^{2} E\left[A_{1}\right] E\left[A_{2}\right]+ \\
& t_{1}^{2} E\left[A_{0}\right] E\left[A_{2}\right]+t_{1}^{2} t_{2} E\left[A_{1}\right] E\left[A_{2}\right]+t_{1}^{2} t_{2}^{2} E\left[A_{2}^{2}\right] \\
= & 1+t_{1} t_{2}+t_{1}^{2} t_{2}^{2} \quad\left(\because E\left[A_{i}\right]=0 \forall i\right) .
\end{aligned}
$$

Ans 4. $Y_{n}=a_{0} X_{n}+a_{1} X_{n-1}, n=1,2, \ldots$ where a_{i}^{\prime} s are constants and X_{0}, X_{1}, \ldots, are i.i.d's random variables with $\mathrm{E}\left(X_{i}\right)=0$ and $\operatorname{Var} X_{i}=\sigma^{2}$.
(a) Is Y_{n} covariance stationary:
(i) $E\left[Y_{n}\right]=E\left[a_{0} X_{n}+a_{1} X_{n-1}\right]=0$
(ii) $E\left[Y_{n}^{2}\right]=E\left[\left(a_{0} X_{n}+a_{1} X_{n-1}\right)^{2}\right]$

$$
\begin{aligned}
& =E\left[a_{0}^{2} X_{n}^{2}+a_{1}^{2} X_{n-1}^{2}+2 a_{0} a_{1} X_{n} X_{n-1}\right] \\
& =a_{0}^{2} \sigma^{2}+a_{1}^{2} \sigma^{2}+2 a_{0} a_{1} E\left(X_{n} X_{n-1}\right) \\
& =a_{0}^{2} \sigma^{2}+a_{1}^{2} \sigma^{2}+a_{0} a_{1}\left(E\left(X_{n}\right) E\left(X_{n-1}\right)\right) \quad(\because \text { they are i.i.d }) \\
& =a_{0}^{2} \sigma^{2}+a_{1}^{2} \sigma^{2}\left(\because \mathrm{E}\left(X_{i}\right)=0\right)
\end{aligned}
$$

(iii) $\operatorname{Cov}\left(Y_{n}, Y_{m}\right)=\operatorname{Cov}\left(a_{0} X_{n}+a_{1} X_{n-1}, a_{0} X_{m}+a_{1} X_{m-1}\right)$

$$
\begin{aligned}
& =E\left[\left(a_{0} X_{n}+a_{1} X_{n-1}\right)\left(a_{0} X_{m}+a_{1} X_{m-1}\right)\right]\left(\because E\left(Y_{n}\right)=E\left(Y_{m}\right)=0\right) \\
& =E\left[a_{0}^{2} X_{n} X_{m}+a_{0} a_{1} X_{n} X_{m-1}+a_{1} a_{0} X_{m} X_{n-1}+a_{1}^{2} X_{m-1} X_{n-1}\right] \\
& = \begin{cases}a_{0}^{2} \sigma^{2}+a_{1}^{2} \sigma^{2}, & \mathrm{n}=\mathrm{m} ; \\
a_{0} a_{1} \sigma^{2}, & \mathrm{n}=\mathrm{m}-1 ; \\
a_{0} a_{1} \sigma^{2}, & \mathrm{n}=\mathrm{m}+1 ; \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

which is a function of $n-m$.
Hence Y_{n} is covariance stationary.

Ans 5. (i) First calculating expectation

$$
\begin{aligned}
E\left(X_{t}\right) & =E\left(c+\phi X_{t-1}+\varepsilon_{t}\right) \\
\mu & =c+\phi \mu+0 \\
\Rightarrow \mu & =\frac{c}{1-\phi}
\end{aligned}
$$

which is independent of t.

$$
\begin{equation*}
\operatorname{Var}\left(X_{t}\right)=\sigma_{X}^{2} \text { and } \tag{1}
\end{equation*}
$$

(ii) $\operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left[c+\phi X_{t-1}+\varepsilon_{t}\right]$

$$
\begin{equation*}
=\phi^{2} \operatorname{Var}\left(X_{t-1}\right)+\sigma_{\epsilon}^{2} \tag{2}
\end{equation*}
$$

Since $\left\{X_{t}: t \in T\right\}$ are identical, $\therefore \operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(X_{t-1}\right)$
Equating (1) and (2):

$$
\begin{aligned}
\sigma_{X}^{2} & =\phi^{2} \sigma_{X}^{2}+\sigma_{\varepsilon}{ }^{2} \\
\sigma_{X}^{2} & =\frac{\sigma_{\varepsilon}{ }^{2}}{1-\phi^{2}} \Rightarrow \operatorname{Var}\left(X_{t}\right)=\frac{\sigma_{\varepsilon}{ }^{2}}{1-\phi^{2}}
\end{aligned}
$$

which exists and is finite for $|\phi|<1$.
(iii) Since X_{t} 's are identical

$$
\begin{aligned}
E\left(X_{t_{1}} X_{t_{2}}\right) & =\mu^{2} \text { and } \\
\operatorname{Cov}\left(X_{t_{1}}, X_{t_{2}}\right) & =0
\end{aligned}
$$

which are functions of $\left|t_{1}-t_{2}\right|$.
Hence the process is wide sense stationary.

Ans 6. We have $X(t)=N(t+L)-N(t) \sim P(\lambda(t+L-t))=P(\lambda L)$
(a) $E(X(t))=\lambda L$ which is independent of t .
(b) $E\left(X^{2}(t)\right)=\lambda L+(\lambda L)^{2}<\infty \quad \forall t$.
(c) Let $s<t$.

$$
\begin{aligned}
\operatorname{cov}(X(t), X(s)) & =E(X(t) X(s))-E(X(t)) E(X(s)) \\
& =E((X(t)-X(s)+X(s)) X(s))-(\lambda L)^{2} \\
& =E(X(t)-X(s)) E(X(s))+E\left(X^{2}(s)\right)-(\lambda L)^{2} \\
& =0 * E(X(s))+\lambda L \\
& =\lambda L
\end{aligned}
$$

which is constant function. So we can consider it as a function of $t-s$.
From (a),(b) and (c) $\{X(t), \quad t \geq 0\}$ is covariance stationary.

Ans 7. (a) $E(X(t))=E\left(Z_{1}\right) \cos (\lambda t)+E\left(Z_{2}\right) \sin (\lambda t)$
$=0$ which is independent of t.
(b) $E\left(X^{2}(t)\right)=\cos ^{2}(\lambda t) E\left(Z_{1}^{2}\right)+\sin ^{2}(\lambda t) E\left(Z_{2}^{2}\right)+2 \cos (\lambda t) \sin (\lambda t) E\left(Z_{1}\right) E\left(Z_{2}\right)$

$$
=\cos ^{2}(\lambda t) \sigma^{2}+\sin ^{2}(\lambda t) \sigma^{2}+2 \cos (\lambda t) \sin (\lambda t) * 0
$$

$$
=\sigma^{2}<\quad \forall t
$$

From (a),(b) $\{X(t), \quad t \geq 0\}$ is second order stationary.

