Self Evaluation Test

1. If $A=\left[\begin{array}{cc}1 & 1-\iota \\ 1+\iota & 2 \\ 1 & 1-\iota\end{array}\right]$ then compute $A^{@}$

Solution. In Example 1.(Module 7, Generalized Inverse) we have

$$
\begin{aligned}
& V=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1-\iota \\
1+\iota & -\iota
\end{array}\right] \\
& U=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1+\iota}{2} & -1 \\
\frac{1+\iota}{\sqrt{2}} & 1 & 0 \\
\frac{1}{\sqrt{2}} & \frac{-1+\iota}{2} & 1
\end{array}\right] \\
& D=\left[\begin{array}{cc}
2 \sqrt{3} & 0 \\
0 & 0 \\
\hline 0 & 0
\end{array}\right] \\
& \text { Then } D^{@}=\left[\begin{array}{cc|c}
\frac{1}{2 \sqrt{3}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& A^{@}=V D^{@} U^{*} \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1-\iota}{\sqrt{3}} \\
\frac{1+\iota}{\sqrt{3}} & \frac{-\iota}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2 \sqrt{3}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1-\iota}{2} & \frac{1}{2} \\
\frac{-1-\iota}{2 \sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{-1-\iota}{2 \sqrt{2}} \\
\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1-\iota}{\sqrt{3}} \\
\frac{1+\iota}{\sqrt{3}} & \frac{-\iota}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{4 \sqrt{3}} & \frac{1-\iota}{4 \sqrt{3}} & \frac{1}{4 \sqrt{3}} \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{12} & \frac{1-\iota}{12} & \frac{1}{12} \\
\frac{1+\iota}{12} & \frac{2}{12} & \frac{1+\iota}{12}
\end{array}\right] \\
& A^{@}=\frac{1}{12}\left[\begin{array}{ccc}
1 & 1-\iota & 1 \\
1+\iota & 2 & 1+\iota
\end{array}\right] \\
& A A^{@} A=A \text { and } A^{@} A A^{@}=A^{@}
\end{aligned}
$$

$$
\begin{aligned}
A A^{@} A & =\left[\begin{array}{cc}
1 & 1-\iota \\
1+\iota & 2 \\
1 & 1-\iota
\end{array}\right] \frac{1}{12}\left[\begin{array}{ccc}
1 & 1-\iota & 1 \\
1+\iota & 2 & 1+\iota
\end{array}\right]\left[\begin{array}{cc}
1 & 1-\iota \\
1+\iota & 2 \\
1 & 1-\iota
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1-\iota \\
1+\iota & 2 \\
1 & 1-\iota
\end{array}\right] \frac{1}{12}\left[\begin{array}{cc}
4 & 41-\iota \\
41+\iota & 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1-\iota \\
1+\iota & 2 \\
1 & 1-\iota
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1-\iota}{3} \\
\frac{1+\iota}{3} & \frac{2}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+\iota & 2 \\
1 & 1-\iota
\end{array}\right]
\end{aligned}
$$

Similarly $A^{@} A A^{@}=A^{@}$.
2. Compute $A^{@}$ where $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.

Solution. $A^{*} A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ which has eigen values $\lambda_{1}^{2}=2, \lambda_{2}=0$ and corresponding orthogonal set of eigen vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
After normalization choose the unitary matrix V with these as columns.

$$
\begin{aligned}
V & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
A V & =\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} \mu_{1}, & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mu_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& x_{1}=\mu_{1} \\
& x_{2}=e_{2}-\frac{\left\langle e_{2}, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1} \\
& =(0,1)-\frac{\langle(0,1),(1,0)\rangle}{1}(1,0) \\
& =(0,1) \\
& \text { Therefore } U=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \text { Then } \quad U^{*} A V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 0
\end{array}\right] \\
& =D \\
& D^{@}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 0
\end{array}\right] \\
& A^{@}=V D^{@} U^{*} \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0
\end{array}\right] \\
& A A^{@} A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \\
& =A
\end{aligned}
$$

Similarly $A^{@} A A^{@}=A^{@}$.
3. Solve the $x+2 y=1$ by Generalised inverse method.

Solution.

$$
\begin{aligned}
x+2 y & =1 \\
{\left[\begin{array}{ll}
1, & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =1 \\
\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{ll}
1, & 2
\end{array}\right]^{@}[1]
\end{aligned}
$$

where $\left[\begin{array}{ll}1, & 2\end{array}\right]^{@}$ is generalised inverse of $\left[\begin{array}{ll}1, & 2\end{array}\right]$.
Let $A=\left[\begin{array}{ll}1, & 2\end{array}\right], A^{*}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
$A^{*} A=\left[\begin{array}{l}1 \\ 2\end{array}\right][1, \quad 2]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ which have eigen values $\lambda_{1}^{2}=5, \lambda_{2}=0$ and the corresponding eigen vector $(1,2)$ and $(-2,1)$. After normalization choose the unitary matrix V with these as columns.

$$
\begin{aligned}
& V=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right] \\
& A V=\left[\begin{array}{ll}
1, & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\sqrt{5}, & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} \mu_{1}, & 0
\end{array}\right] \\
& \Rightarrow \mu_{1}=1 \\
& U=[1] \\
& D=U^{*} A V \\
& =[1]\left[\begin{array}{ll}
1, & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\sqrt{5}, & 0
\end{array}\right] \\
& D^{@}=\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
0
\end{array}\right] \\
& A^{@}=V D^{@} U^{*} \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
0
\end{array}\right][1]
\end{aligned}
$$

$$
\begin{aligned}
& A^{@}=\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
x \\
y
\end{array}\right]=A^{@}[1] \\
&=\left[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5}
\end{array}\right] \\
& \Rightarrow \quad x=\frac{1}{5} \\
& y=\frac{2}{5}
\end{aligned}
$$

