Module 6

Self Evaluation Test

1. Obtain an orthonormal basis for v, the space of all real polynomials of degree atmost 2 , the inner product being defined by,

$$
\begin{equation*}
(f, g)=\int_{0}^{1} f(x) g(x) d x \tag{1}
\end{equation*}
$$

Solution. We have $v=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{i} \in R\right\}$
Clearly $\left\{v_{1}=1, v_{2}=x, v_{3}=x^{2}\right\}$ is a basis of V.
Let $w_{1}=v_{1}$ so that $\left\|w_{1}\right\|^{2}=\left(w_{1} \mid w_{1}\right)=(1 \mid 1)$ or

$$
\begin{equation*}
\left\|w_{1}\right\|^{2}=\int_{0}^{1} 1.1 d x \tag{2}
\end{equation*}
$$

$\therefore \frac{w_{1}}{\left\|w_{1}\right\|}=1$ let $w_{2}=v_{2}-\frac{\left(v_{2} \mid w_{1}\right) w_{1}}{\left\|w_{1}\right\|^{2}}$
We have, $\left(v_{2}, w_{1}\right)=\left(v_{2}, v_{1}\right)=\int_{0}^{1} x .1 d x=\frac{1}{2}$ So by (2) we get,

$$
\begin{align*}
w_{2} & =x-\frac{1}{2} \\
\Rightarrow\left\|w_{2}\right\|^{2} & =\int_{0}^{1} w_{2} \cdot w_{2} d x \\
& =\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x \\
& =\frac{1}{12} \\
\therefore \frac{w_{2}}{\left\|w_{2}\right\|} & =\sqrt{12}\left(x-\frac{1}{2}\right) \tag{3}
\end{align*}
$$

Let $w_{3}=v_{3}-\frac{\left(v_{3} \mid w_{1}\right) w}{\left\|w_{1}\right\|^{2}}-\frac{\left(v_{3} \mid w_{2}\right) w_{2}}{\left\|w_{2}\right\|^{2}}$
We have, $\left(v_{3} \mid w_{1}\right)=\int_{0}^{1} v_{3} \cdot w_{1} d x$

$$
\begin{aligned}
& =\int_{0}^{1} x^{2} \cdot 1 d x \\
& =\frac{1}{3} \\
\left(v_{3} \mid w_{2}\right) & =\int_{0}^{1} v_{3} \cdot w_{2} d x \\
& =\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x \\
& =\frac{1}{4}-\frac{1}{6} \\
& =\frac{1}{12} \\
\text { and }\left\|w_{1}^{2}\right\| & =1 \\
\left\|w_{2}\right\|^{2} & =\frac{1}{12}
\end{aligned}
$$

putting in (3), we get,

$$
\begin{aligned}
w_{3} & =x^{2}-\frac{1}{3} \cdot 1-\left(x-\frac{1}{2}\right) d x \\
& =x^{2}-x+\frac{1}{6} \\
\left\|w_{3}\right\|^{2} & =\left(w_{3} \mid w_{3}\right) \\
& =\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x \\
& =\frac{1}{180} \\
\therefore \frac{w_{3}}{\left\|w_{3}\right\|} & =\sqrt{180}\left(x^{2}-x+\frac{1}{6}\right)
\end{aligned}
$$

Hence an orthonormal basis for V is, $\left\{1,2+\sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right\}$
2. Show that in a complex inner product space v. If x is orthogonal to y then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

However the converse need not be true. Justify.

Solution. We have, $(x \mid y)=0 \Rightarrow(y \mid x)=(\overline{x, y})=\overline{0}=0$

$$
\begin{aligned}
\therefore\|x+y\|^{2} & =(x+y, x+y) \\
& =(x \mid x)+(x \mid y)+(y \mid x)+(y \mid y) \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

However the converse need not be true.
Consider, $V=\mathbb{C}^{2}$ with standard inner product.
Let $x=(0, i) y=(0,1) \in V$ then
$(x \mid y)=0.0+i .1=i \neq 0 \Rightarrow x$ is not orthogonal to y.
Now $\|x\|^{2}=0.0+i . \bar{i}=i(-i)=1$
$\|y\|^{2}=0.1+1.1=1$ We have, $(0,(1+i))$, and so $\|x+y\|^{2}=0.0+(1+i) \overline{(1+i)}$
or $\|x+y\|^{2}=(1+i)(1-i)=1-i^{2}=2$
$\Rightarrow\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$, but x is not orthogonal to y.
3. A 2×2 real symmetric matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ is positive definite iff the diagonal entries a and d are positive and the determinant $|A|=a d-b c=a d-b^{2}$ is positive.

Solution. To prove $A=\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ is positive definite iff a and d are positive and $|A|=a d-b^{2}$ is positive.

Let $u=[x, y]^{T}$, then

$$
\begin{aligned}
f(u) & =u^{T} A u \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =a x^{2}+2 b x y+d y^{2}
\end{aligned}
$$

Suppose $f(u)>0$ for every $u \neq 0$, then $f(1,0)=a>0$ and $f(0,1)=d>0$.
Also we have $f(b,-a)=a\left(a d-b^{2}\right)>0$ since $a>0$, we get $a d-b^{2}>0$. Conversely suppose $a>0, b=0, a d-b^{2}>0$. Completing the square give us,

$$
\begin{aligned}
f(u) & =a\left(x^{2}+\frac{2 b}{a} x y+\frac{b^{2}}{a} y^{2}\right)+d y^{2}-\frac{b^{2}}{a} y^{2} \\
& =a\left(x+\frac{b y}{a}\right)^{2}+\frac{a d-b^{2}}{a} y^{2}
\end{aligned}
$$

Accordingly $f(u)>0$ for every $u \neq 0$
4. Let $(x \mid(1))$ be complex inner product space, and let $\theta: X \rightarrow X$ be any linear map such that $(\theta v \mid v)=0 \forall v \in X$ then $\theta=0$, the zero map.

Solution. For all $x, y \in X$ and all $\alpha \in \mathbb{C}$ we have,

$$
\begin{align*}
0 & =(\theta(\alpha x+y) \mid \alpha x+y) \\
& =(\theta(\alpha x)+\theta y \mid \alpha x+y) \\
& =\underbrace{(\theta(\alpha x) \mid \alpha x)}_{0}+(\theta(\alpha x) \mid y)+(\theta(y) \mid \alpha x)+\underbrace{(\theta y \mid y)}_{0} \\
& =(\alpha(\theta x) \mid y)+(\theta y \mid \alpha x) \\
& =\bar{\alpha}(\theta(x) \mid y)+\alpha(\theta(y) \mid x) \tag{1}
\end{align*}
$$

Put first $\alpha=1$ and then $\alpha=i$ in the equation (1), we get

$$
\begin{align*}
(\theta(x) \mid y)+(\theta(y) \mid x) & =0 \tag{2}\\
-i(\theta(x) \mid y)+i(\theta(y) \mid x) & =0 \forall x, y \in X \tag{3}
\end{align*}
$$

Applying $i(2)+(3)$, we get

$$
\begin{aligned}
& 2 i(\theta y \mid x)=0,2 i \neq 0 \Rightarrow(\theta y \mid x)=0 \forall x, y \in X \\
& \Rightarrow \theta(y)=0 \forall y \in X \\
& \left(\because\left(x_{0}, y\right)=0 \forall y \in X \text { iff } x_{0}=0\right) \\
& \Rightarrow \theta=0, \text { the zero map. }
\end{aligned}
$$

Note. This is not the case when $(X,(1))$ is a real inner product space, for instance let $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotate each $x \in \mathbb{R}^{2}$ by 90°.
5. Let V be a complex inner product space and let $T \in L(V)$. Then T is self adjoint iff

Proof. Let $v \in V$. Then,

$$
\begin{aligned}
(T v \mid v)-\overline{(T v \mid v)} & =(T v \mid v)-(v \mid T v) \\
& =(T v \mid v)-\left(T^{*} v \mid v\right) \\
& =\left(\left(T-T^{*}\right) v \mid v\right)
\end{aligned}
$$

If $(T v \mid v) \in R \forall v \in V$ then the left hand side of above equation becomes 0 . So,

$$
\begin{aligned}
\left(\left(T-T^{*}\right) v \mid v\right) & =0 \forall v \in V \\
\Rightarrow\left(T-T^{*}\right) v & =0 \forall v \in V \\
\Rightarrow T-T^{*} & =0 \\
\Rightarrow T & =T^{*}
\end{aligned}
$$

and hence T is self adjoint.
Conversely, if T is self adjoint then the right hand side of above equation becomes 0 .
So $(T v \mid v)=\overline{(T v \mid v)}$ for every $v \in V$, this implies that $(T v \mid v) \in R$ for every $v \in V$ as desired.

