Module 5

Self Evaluation Test

1. Which of the following functions $\beta: R^{2} \times R^{2} \rightarrow R$ are bilinear forms?
(a) $\beta(x, y)=1, x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$
(b) $\beta(x, y)=\left(x_{1}+y_{1}\right)^{2}-\left(x_{1}-y_{1}\right)^{2}$
(c) $\beta(x, y)=1, x=\left(x_{1} y_{2}\right)-\left(x_{2} y_{1}\right)$
(R^{2} is a R-module, $R \sim$ set of real no's)
Solution (a) $\beta(x, z)=1, \beta(y, z)=1, \beta(x+y, z)=1 \neq \beta(x, z)+\beta(y, z)$
$\beta(x, y)=1$ not a bilinear form.
(b) $\beta(x, y)=\not x_{1}^{2}+\not y_{1}^{2}+2 x_{1} y_{1}-\not x_{1}^{2}-\not y_{1}^{2}+2 x_{1} y_{1}$

$$
\beta(x, y)=4 x_{1} y_{1}
$$

$$
\beta(x \lambda, \mu y)=\beta\left(\lambda\left(x_{1}, x_{2}\right), \mu\left(y_{1}, y_{2}\right)\right)
$$

$$
=\beta\left(\left(\lambda x_{1}, \lambda x_{2}\right),\left(\mu y_{1}, \mu y_{2}\right)\right)
$$

$$
=4 \lambda x_{1} \mu y_{1}
$$

$$
=\lambda \mu 4 x_{1} y_{1}
$$

$$
=\lambda \mu \beta(x, y)
$$

$$
\beta(x+\mu, y)=\beta\left(\left(x_{1}, x_{2}\right)+\left(\mu_{1}, \mu_{2}\right),\left(y_{1}, y_{2}\right)\right)
$$

$$
=\beta\left(\left(x_{1}+\mu_{1}, x_{2}+\mu_{2}\right),\left(y_{1}, y_{2}\right)\right)
$$

$$
=4\left(x_{1}+\mu_{1}\right) y_{1}
$$

$$
=4 x_{1} y_{1}+\mu_{1} y_{1}
$$

$$
=\beta(x, y)+\beta(\mu, y)
$$

$\Rightarrow \beta$ is a bilinear form.
(c) $\beta(x, y)=x_{1} y_{2}-x_{2} y_{1}$

$$
\begin{aligned}
\beta(\lambda x, \mu y) & =\beta\left(\left(\lambda x_{1}, \lambda x_{2}\right),\left(\mu y_{1}, \mu y_{2}\right)\right) \\
& =\lambda x_{1} \mu y_{2}-\lambda x_{2} \mu y_{1} \\
& =\lambda \mu x_{1} y_{2}-\lambda \mu x_{2} y_{1} \\
& =\lambda \mu\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
& =\lambda \mu \beta(x, y)
\end{aligned}
$$

$$
\begin{aligned}
\beta(x+\mu, y) & =\beta\left(\left(x_{1}+\mu_{1}, x_{2}+\mu_{2}\right),\left(y_{1}, y_{2}\right)\right) \\
& =\left(x_{1}+\mu_{1}\right) y_{2}-\left(x_{2}+\mu_{2}\right) y_{1} \\
& =x_{1} y_{2}+\mu_{1} y_{2}-x_{2} y_{1}-\mu_{2} y_{1} \\
& =x_{1} y_{2}-x_{2} y_{1}+\mu_{1} y_{2}-\mu_{2} y_{1} \\
& =\beta(x, y)+\beta(\mu, y)
\end{aligned}
$$

$\Rightarrow \beta$ is a bilinear form.
2. The following expressions define quadratic forms Q on R^{2}. Find the symmetric bilinear form β corresponding to each Q.
(a) $a x_{1}^{2}$
(b) $3 x_{1} x_{2}-x_{2}^{2}$

Solution.(a)

$$
\begin{aligned}
Q(x) & =a x_{1}^{2} \\
& =\beta(x, x) \text { where } x=\left(x_{1}, x_{2}\right) \\
\beta(x, y) & =\frac{1}{4}[Q(x+y)-Q(x-y)] \\
Q(x+y) & =Q\left(\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right) \\
& =a\left(x_{1}+y_{1}\right)^{2} \\
Q(x-y) & =a\left(x_{1}-y_{1}\right)^{2} \\
\beta(x, y) & =\frac{1}{4}\left[a\left(x_{1}+y_{1}\right)^{2}-a\left(x_{1}-y_{1}\right)^{2}\right] \\
& =\frac{4 a}{4} x_{1} y_{1} \\
& =a x_{1} y_{1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
Q(x) & =3 x_{1} x_{2}-x_{2}^{2} \\
Q\left(\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right) & =Q(x+y) \\
& =3\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)-\left(x_{2}+y_{2}\right)^{2} \\
Q(x-y) & =Q\left(\left(x_{1}-y_{1}\right),\left(x_{2}-y_{2}\right)\right) \\
& =3\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-\left(x_{2}-y_{2}\right)^{2} \\
\beta(x, y) & =\frac{1}{4}[Q(x+y)-Q(x-y)] \\
& =\frac{1}{4}\left[3\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)-\left(x_{2}+y_{2}\right)^{2}-3\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+\left(x_{2}-y_{2}\right)^{2}\right] \\
& =\frac{1}{4}\left[6 x_{1} y_{2}+6 y_{1} x_{2}-4 x_{2} y_{2}\right] \\
& =\frac{1}{2}\left[3 x_{1} y_{2}+3 y_{1} x_{2}-2 x_{2} y_{2}\right]
\end{aligned}
$$

3. Let Q be a quadratic form associated with symmetric bilinear form β. Verify the polar identity

$$
\beta(x, y)=\frac{1}{2}[Q(x+y)-Q(x)-Q(y)]
$$

Solution.

$$
\begin{aligned}
\frac{1}{2}[Q(x+y)-Q(x)-Q(y)] & =\frac{1}{2}[\beta(x+y, x+y)-\beta(x, x)-\beta(y, y)] \\
& =\frac{1}{2}[\beta(x, x)+\beta(x, y)+\beta(y, x)+\beta(y, y)-\beta(x, x)-\beta(y, y)] \\
& =\frac{1}{2} \times 2 \beta(x, y) \quad[\beta(x, y)=\beta(y, x)] \\
& =\beta(x, y)
\end{aligned}
$$

4. Every bilinear form on a vector space X over a field F can be uniquely expressed as the sum of a symmetric and skew-symmetric bilinear forms.

Solution. We know that every vector space over a field is also a module.
Let β be a bilinear form on a vector space X over F.
Let $g(x, y)=\frac{1}{2}[\beta(x, y)+\beta(y, x)]$

$$
g(x, y)=\frac{1}{2}[\beta(x, y)-\beta(y, x)] \quad \forall x, y \in X
$$

Therefore g and h are also bilinear form on X.

$$
\begin{aligned}
g(y, x) & =\frac{1}{2}[\beta(y, x)+\beta(x, y)] \Rightarrow g \text { is symmetric. } \\
& =g(x, y) \\
h(y, x) & =\frac{1}{2}[\beta(y, x)-\beta(x, y)] \\
& =-\frac{1}{2}[\beta(x, y)-\beta(y, x)] \\
& =-h(x, y)
\end{aligned}
$$

$\Rightarrow h$ is skew-symmetric.

$$
\begin{aligned}
\beta(x, y) & =g(x, y)+h(x, y) \\
\Rightarrow \beta & =g+h
\end{aligned}
$$

Now suppose that $\beta=\beta_{1}+\beta_{2}$ where β_{1} is the symmetric bilinear form and β_{2} is skew symmetric
bilinear form.

$$
\begin{align*}
\beta(x, y) & =\left(\beta_{1}+\beta_{2}\right)(x, y) \\
& =\beta_{1}(x, y)+\beta_{2}(x, y) \tag{1}\\
\beta(y, x) & =\left(\beta_{1}(y, x)+\beta_{2}(y, x)\right) \\
& \left.=\beta_{1}(x, y)-\beta_{2}(x, y)\right) \tag{2}
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
2 \beta_{1}(x, y) & =\beta(x, y)+\beta(y, x) \\
\beta_{1}(x, y) & =\frac{1}{2}[\beta(x, y)+\beta(y, x)] \\
& =g(x, y) \\
\Rightarrow \beta_{1} & =g
\end{aligned}
$$

Similarly it can be proved that $\beta_{2}=h$.
5. Can a sesquilinear is a bilinear form.

Solution. Only zero form is both bilinear and sesquilinear form. Non zero sesquilinear form can not be a bilinear form.

Suppose β is a sesquilinear form and bilinear form.

$$
\begin{aligned}
\beta(x, \lambda y) & =\bar{\lambda} \beta(x, y) \\
\beta(x, \lambda y) & =\lambda \beta(x, y) \\
(\bar{\lambda}-\lambda) \beta(x, y) & =0(\text { In general } \bar{\lambda}-\lambda \neq 0) \\
\Rightarrow \beta(x, y) & =0 \forall x, y \in X
\end{aligned}
$$

$\Rightarrow \beta$ is zero form.

