Self Evaluation Test

1. let A be a 2×2, non zero complex number st, $N^{2}=0$ then prove that N is similar over \mathbb{C} to $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

Solution. Let $\mathbb{T}: \mathbb{V} \rightarrow \mathbb{V}$ be a Linear operator st: $[T]_{B}=A ; \quad B=\left\{v_{1}, v_{2}\right\}$ is basis of V
Now $0=A^{2}=A \cdot A=[T]_{B}[T]_{B}=[T]_{B}^{2} \quad \Rightarrow T=0$
as $A \neq 0 \Rightarrow T \neq 0$
Let λ be an eigen value of $T \Rightarrow \quad \exists 0 \neq v \in V$ st: $T(v)=\lambda v$
$\Rightarrow 0=T^{2}(v)=\lambda^{2} v$ but $v \neq 0 \quad \Rightarrow \lambda=0,0$
$\Rightarrow 0=\lambda$ is only eigen value of T.
Let $\omega_{0}=\{x \in V: T(x)=0\}=\operatorname{ker} T$ be the eigen space corresponding to $\lambda=0$.
Since $0 \neq v \in \omega_{0} \Rightarrow \omega_{0} \neq\{0\}$
$\Rightarrow \operatorname{dim} \omega_{0}=1$ or $2 ;$ if $\operatorname{dim} \omega_{0}=2 \Rightarrow \operatorname{dim} \omega_{0}=\operatorname{dim} V \Rightarrow \omega_{0}=V$
$\Rightarrow \operatorname{Ker} T=V \Rightarrow T=0$
$\Rightarrow \operatorname{dim} \omega_{0}=1$; let $\omega_{0}=\left\langle\omega_{2}\right\rangle \Rightarrow \exists$ a subspace ω^{\prime} of V st
$V=\omega^{\prime} \oplus \omega_{0}, \Rightarrow \operatorname{dim} \omega^{\prime}=1$; let $\omega^{\prime}=<\omega_{1}>$
Then $<\omega_{1}, \omega_{2}>$ is basis of V
as $T\left(\omega_{1}\right), T\left(\omega_{2}\right) \in V=\omega^{\prime} \oplus \omega_{0}$
So let $T\left(\omega_{1}\right)=\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}$
$T\left(\omega_{2}\right)=0 \omega_{1}+0 \omega_{2} \quad\left(\because \omega_{2} \in \omega_{0}\right)$
But $T^{2}=0$
$\Rightarrow 0=T^{2}\left(\omega_{1}\right)=T\left(\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}\right)$
$=\alpha_{1}\left(\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}\right)+\alpha_{2} .0$
$=\alpha_{1}^{2} \omega_{1}+\alpha_{1} \alpha_{2} \omega_{2}$
$\Rightarrow \alpha_{1}=0, \alpha_{2} \neq 0$
(because if $\alpha_{2}=0 \Rightarrow T\left(\omega_{1}\right)=\alpha_{1} \omega_{1} \Rightarrow \omega_{1} \in \omega^{\prime} \cap \omega_{0}=\{0\} \Rightarrow \omega_{1}=0$)
$\Rightarrow T\left(\omega_{1}\right)=\alpha_{2} \omega_{2}$
Now $B^{\prime}=\left\{\alpha_{2}^{-1} \omega_{1}, \omega_{2}\right\}$ is basis of V
(because $a \alpha_{2}^{-1} \omega_{1}+b \omega_{2}=0$
$\Rightarrow a \alpha_{2}^{-1}=0=b$
$\Rightarrow a=0=b \Rightarrow$ L.I hence basis because $\operatorname{dim} V=2$)
$T\left(\alpha_{2}^{-1} \omega_{1}\right)=\alpha_{2}^{-1} T\left(\omega_{1}\right)=\alpha_{2}^{-1}\left(\alpha_{2} \omega_{2}\right)=\omega_{2}=0 . \alpha_{2}^{-1} \omega_{1}+1 . \omega_{2}$
$T\left(\omega_{2}\right)=0 . \alpha_{2}^{-1} \omega_{1}+0 . \omega_{2}$
$\Rightarrow[T]_{B^{\prime}}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ over \mathbb{C}
2. let P be a operator on R^{2} such that $P(x, y)=(x, 0)$ what is the minimal polynomial for P ?

Solution. we are given that $P(x, y)=(x, 0) \forall(x, y) \in R^{2} \ldots . .(1)$
Let $c \in R$ be an eigen value of p then there exist some $(x, y) \neq(0,0) \in R$ such that
$P(x, y)=c(x, y)$
$\Rightarrow(x, 0)=(c x, c y)$
$\Rightarrow c x=x, c y=0$
$\Rightarrow x(c-1)=0, c y=0$
If $c=0$ then $(0,1)$ is an eigen vector of p since
$P(0,1)=(0,0)=c(0,1)$
If $c=1$ then $(1,0)$ is an eigen vector of P since
$P(1,0)=(1,0)=c(1,0)$
Hence 0,1 are the eigen values of P and characteristic polynomial for P is
$f(x)=(x-0)(x-1)=x(x-1)$
If $P(x)=x \Rightarrow p(P)=P$ and $P(x, y)=(x, 0) \neq(0,0)$ for $x \neq 0$
$\therefore p(P) \neq 0$
If $p(x)=x-1 \Rightarrow p(P)=P-I$ and
$(P-I)(x, y)=P(x, y)-I(x, y)=(x, 0)-(x, y)=(0,-y) \neq(0,0)$ for $y \neq 0$
$\Rightarrow p(P) \neq 0$
If $p(x)=x(x-1)=x^{2}-x \Rightarrow p(P)=P^{2}-P$ and
$\left(p^{2}-P\right)(x, y)=P(P(x, y))-P(x, y)$
$=P(x, 0)-(x, 0)=(x, 0)-(x, 0)=(0,0) \forall(x, y) \in \mathbb{R}^{2}$
$\Rightarrow p(P)=0$
Hence minimal polynomial for P is $x(x-1)$.
3. Let V be the vector space of $n \times n$ matrices over the field \mathbb{F}. Let A be a fixed $n \times n$ matrix. Let T be a Linear operator on V defined by

$$
\begin{equation*}
T(B)=A B \forall B \in V \tag{1}
\end{equation*}
$$

Show that the minimal polynomial for T is the minimal polynomial for A.

Solution. Let $p(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in \mathbb{F}$ be the minimal polynomial for T and
$q(x)=x^{m}+b_{1} x^{m-1}+\ldots+b_{m} \in \mathbb{F}[x]$ the minimal polynomial for A then,
$p(T)=0$ and $q(A)=0 \ldots(2)$
by $(1) T(I)=A I=A$
$T^{2}(I)=T(T(I))=T(A)=A^{2}$
Similarly $T^{3}(I)=A^{3}, \ldots, T^{n}(I)=A^{n}$ using the results, we see that
$0=p(T) I=\left(T^{n}+a_{1} T^{n-1}+\ldots+a_{n} I\right) I$
$=A^{n}+a_{1} A^{n-1}+\ldots+a_{n} I=p(A)$
$\Rightarrow p(A)=0$
Now we show that $\frac{q(x)}{p(x)}$.
let c be a root of $p(x)$ we can write
$p(x)=(x-c) q(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} q(x)$
we have $p(A)=(A-c I) q(A)+r(A)$
$\Rightarrow r(A)=0 \quad(\because p(A)=q(A)=0)$
If $r(x) \neq 0 \Rightarrow \operatorname{deg} r(x)<\operatorname{deg} q(x)$ and $r(A)=0$ contradict the minimality of $q(x)$ so $r(x)=0$
$\Rightarrow p(x)=(x-c) q(x) \Rightarrow \frac{q(x)}{p(x)}$
Finally we show that $\frac{p(x)}{q(x)}$
We have $O=q(A) B$
$=\left(A^{m}+b_{1} A^{m-1}+\ldots .+b_{m} I\right) B$
$=\left[T^{m}(I)+b_{1} T^{m-1}(I)+\ldots+b_{m} I\right] B$
$\left.=T^{m} B+b_{1} T^{m-1} B+\ldots+b_{m} I\right) B$
$=q(T)=0$
Since $p(x)$ is the minimal polynomial for T and $q(T)=0$
so $\frac{p(x)}{q(x)}$
$\Rightarrow p(x)=q(x)(i c)$ minimal polynomial for T is the minimal polynomial for A.
4. Let T be a Linear operator on \mathbb{R}^{3} which is represented in standard ordered basis by the matrix

$$
A=\left[\begin{array}{ccc}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right]
$$

Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^{3} each vector of which is characteristic vector of T.

Solution. Characteristic equation of T is $\operatorname{det}(A-x I)=0$

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-9-x & 4 & 4 \\
-8 & 3-x & 4 \\
-16 & 8 & 7-x
\end{array}\right] } & =0 \\
\Rightarrow\left[\begin{array}{ccc}
-1-x & 4 & 4 \\
-1-x & 3-x & 4 \\
-1-x & 8 & 7-x
\end{array}\right] & =0 \text { by } c_{1}+c_{2}+c_{3} \\
\text { or }-(1+x)\left[\begin{array}{ccc}
1 & 4 & 4 \\
1 & 3-x & 4 \\
1 & 8 & 7-x
\end{array}\right] & =0 \\
\text { or }-(1+x)\left[\begin{array}{ccc}
1 & 4 & 4 \\
0 & -1-x & 0 \\
0 & 4 & 3-x
\end{array}\right] & =0 \\
\text { or }(1+x)(1+x)(3-x) & =0
\end{aligned}
$$

Hence the characteristic values of T are $3,-1,-1$. The characteristic vector corresponding to $x=3$ is given by

$$
\begin{aligned}
(A-3 I) X & =0 \\
\Rightarrow\left[\begin{array}{ccc}
-12 & 4 & 4 \\
-8 & 0 & 4 \\
-16 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

or $\left[\begin{array}{ccc}-4 & 4 & 0 \\ 0 & -8 & 4 \\ 0 & -8 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\text { by } R_{1} \rightarrow R_{1}-R_{2} ; \quad R_{2} \rightarrow R_{2}-2 R_{1} ; \quad R_{3} \rightarrow R_{3}-4 R_{1}
$$

$$
\left[\begin{array}{ccc}
-4 & 4 & 0 \\
0 & -8 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\text { by } R_{3}=R_{3}-R_{2}
$$

$\Rightarrow-x_{1}+x_{2}=0, \quad-2 X_{2}+x_{3}=0$
These equations are satisfied by $x_{1}=1, x_{2}=1, x_{3}=2$. an eigen vector corresponding to eigen value $x=3$ is
$X_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
The eigen vector corresponding to the given value $x=-1$ is given by

$$
\begin{aligned}
(A+I)(X) & =0 \\
{\left[\begin{array}{lll}
-8 & 4 & 4 \\
-8 & 4 & 4 \\
-16 & 8 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\text { or }\left[\begin{array}{lll}
-8 & 4 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\text { by } R_{2} \rightarrow R_{2}-R_{1} \quad R_{3} \rightarrow R_{3}-2 R_{1}
$$

from the above equation we get
$-2 x_{1}+x_{2}+x_{3}=0$ taking $x_{2}=0$, we get $x_{1}=1, x_{3}=2$
taking $x_{3}=0$ we get $x_{1}=1, x_{2}=2$
Hence, 2 L.I characteristic vectors corresponding to characteristic values $x=-1$ are $X_{2}=$
$\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] \quad X_{3}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
clearly; X_{1}, X_{2}, X_{3} are linearly independent over \mathbb{R} and so the set $\left\{X_{1}, X_{2}, X_{3}\right\}$
constitutes a basis of \mathbb{R}^{3}.
Hence T is diagonalizable. indeed for

$$
\begin{aligned}
& p=\left[\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] ; \\
& P^{-1} A P=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

5. Find the characteristic polynomials for the identity operator and zero operator on an n - dimensional vector space.

Solution. The characteristic polynomial of the identity operator I on V is

$$
\operatorname{det}(I-x I)=\left[\begin{array}{cccccc}
1-x & 0 & - & - & - & 0 \\
0 & 1-x & - & - & - & 0 \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
0 & 0 & - & - & - & 1-x
\end{array}\right]=(1-x)^{n}
$$

The characteristic polynomial of the zero operator O in V is

$$
\operatorname{det}(O-x I)=\left[\begin{array}{cccccc}
-x & 0 & - & - & - & 0 \\
0 & -x & - & - & - & 0 \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
0 & 0 & - & - & - & -x
\end{array}\right]=(-1)^{n} x^{n} .
$$

