Self Evaluation Test

1. let A be a 2 × 2, non zero complex number st, $N^2 = 0$ then prove that N is similar over \mathbb{C} to $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

Solution. Let $\mathbb{T}: \mathbb{V} \to \mathbb{V}$ be a Linear operator st: $[T]_B = A$; $B = \{v_1, v_2\}$ is basis of V

Now
$$0 = A^2 = A \cdot A = [T]_B [T]_B = [T]_B^2 \implies T = 0$$

as
$$A \neq 0 \Rightarrow T \neq 0$$

Let λ be an eigen value of $T \Rightarrow \exists 0 \neq v \in V$ st: $T(v) = \lambda v$

 $\Rightarrow 0 = T^2(v) = \lambda^2 v \text{ but } v \neq 0 \quad \Rightarrow \lambda = 0, 0$

 $\Rightarrow 0 = \lambda$ is only eigen value of T.

Let $\omega_0 = \{x \in V : T(x) = 0\} = \ker T$ be the eigen space corresponding to $\lambda = 0$.

Since $0 \neq v \in \omega_0 \Rightarrow \omega_0 \neq \{0\}$

 $\Rightarrow dim\omega_0 = 1 or 2;$ if $dim\omega_0 = 2 \Rightarrow dim\omega_0 = dimV \Rightarrow \omega_0 = V$

$$\Rightarrow KerT = V \Rightarrow T = 0$$

 $\Rightarrow dim\omega_0 = 1$; let $\omega_0 = \langle \omega_2 \rangle \Rightarrow \exists$ a subspace ω' of V st

 $V = \omega' \oplus \omega_0, \Rightarrow dim\omega' = 1; \text{ let } \omega' = \langle \omega_1 \rangle$

Then $\langle \omega_1, \omega_2 \rangle$ is basis of V

as $T(\omega_1), T(\omega_2) \in V = \omega' \oplus \omega_0$

So let $T(\omega_1) = \alpha_1 \omega_1 + \alpha_2 \omega_2$

 $T(\omega_2) = 0\omega_1 + 0\omega_2 \quad (\because \omega_2 \in \omega_0)$

But
$$T^2 = 0$$

 $\Rightarrow 0 = T^2(\omega_1) = T(\alpha_1\omega_1 + \alpha_2\omega_2)$

$$= \alpha_1(\alpha_1\omega_1 + \alpha_2\omega_2) + \alpha_2.0$$

 $= \alpha_1^2 \omega_1 + \alpha_1 \alpha_2 \omega_2$

$$\Rightarrow \alpha_1 = 0, \alpha_2 \neq 0$$

(because if $\alpha_2 = 0 \Rightarrow T(\omega_1) = \alpha_1 \omega_1 \Rightarrow \omega_1 \in \omega' \cap \omega_0 = \{0\} \Rightarrow \omega_1 = 0$)

$$\Rightarrow T(\omega_1) = \alpha_2 \omega_2$$

Now $B' = \{\alpha_2^{-1}\omega_1, \omega_2\}$ is basis of V

©Copyright Reserved IIT Delhi

(because $a\alpha_2^{-1}\omega_1 + b\omega_2 = 0$

$$\Rightarrow a\alpha_2^{-1} = 0 = b$$

$$\Rightarrow a = 0 = b \Rightarrow \text{L.I hence basis because } dimV = 2 \text{)}$$

$$T(\alpha_2^{-1}\omega_1) = \alpha_2^{-1}T(\omega_1) = \alpha_2^{-1}(\alpha_2\omega_2) = \omega_2 = 0.\alpha_2^{-1}\omega_1 + 1.\omega_2$$

$$T(\omega_2) = 0.\alpha_2^{-1}\omega_1 + 0.\omega_2$$

$$\Rightarrow [T]_{B'} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ over } \mathbb{C}$$

2. let P be a operator on \mathbb{R}^2 such that P(x,y) = (x,0) what is the minimal polynomial for P?

Solution. we are given that $P(x,y) = (x,0) \forall (x,y) \in \mathbb{R}^2$(1)

Let $c \in R$ be an eigen value of p then there exist some $(x, y) \neq (0, 0) \in R$ such that

$$P(x,y) = c(x,y)$$

$$\Rightarrow (x,0) = (cx,cy)$$

$$\Rightarrow cx = x, cy = 0$$

 $\Rightarrow x(c-1) = 0, cy = 0$

If c = 0 then (0, 1) is an eigen vector of p since

$$P(0,1) = (0,0) = c(0,1)$$

If c = 1 then (1, 0) is an eigen vector of P since

$$P(1,0) = (1,0) = c(1,0)$$

Hence 0, 1 are the eigen values of P and characteristic polynomial for P is

$$f(x) = (x - 0)(x - 1) = x(x - 1)$$

If $P(x) = x \Rightarrow p(P) = P$ and $P(x, y) = (x, 0) \neq (0, 0)$ for $x \neq 0$
 $\therefore p(P) \neq 0$
If $p(x) = x - 1 \Rightarrow p(P) = P - I$ and
 $(P - I)(x, y) = P(x, y) - I(x, y) = (x, 0) - (x, y) = (0, -y) \neq (0, 0)$ for $y \neq y$
 $\Rightarrow p(P) \neq 0$
If $p(x) = x(x - 1) = x^2 - x \Rightarrow p(P) = P^2 - P$ and
 $(p^2 - P)(x, y) = P(P(x, y)) - P(x, y)$
 $= P(x, 0) - (x, 0) = (x, 0) - (x, 0) = (0, 0) \forall (x, y) \in \mathbb{R}^2$
 $\Rightarrow p(P) = 0$

Hence minimal polynomial for P is x(x-1).

0

3. Let V be the vector space of $n \times n$ matrices over the field \mathbb{F} . Let A be a fixed $n \times n$ matrix. Let T

be a Linear operator on ${\cal V}$ defined by

$$T(B) = AB \ \forall B \in V \qquad \dots(1)$$

Show that the minimal polynomial for T is the minimal polynomial for A.

Solution. Let $p(x) = x^n + a_1 x^{n-1} + ... + a_n \in \mathbb{F}$ be the minimal polynomial for T and

 $q(x) = x^m + b_1 x^{m-1} + \ldots + b_m \in \mathbb{F}[x]$ the minimal polynomial for A then,

p(T) = 0 and q(A) = 0...(2)

by (1)T(I) = AI = A

$$T^{2}(I) = T(T(I)) = T(A) = A^{2}$$

Similarly $T^{3}(I) = A^{3}, ..., T^{n}(I) = A^{n}$ using the results, we see that

$$0 = p(T)I = (T^n + a_1T^{n-1} + \dots + a_nI)I$$

$$= A^{n} + a_{1}A^{n-1} + \dots + a_{n}I = p(A)$$

$$\Rightarrow p(A) = 0$$

Now we show that $\frac{q(x)}{p(x)}$.

let c be a root of p(x) we can write

p(x) = (x - c)q(x) + r(x) where r(x) = 0 or deg r(x) < deg q(x)

we have p(A) = (A - cI)q(A) + r(A)

$$\Rightarrow r(A) = 0 \quad (\because p(A) = q(A) = 0$$

If $r(x) \neq 0 \Rightarrow deg r(x) < deg q(x)$ and r(A) = 0 contradict the minimality of q(x) so r(x) = 0

$$\Rightarrow p(x) = (x - c)q(x) \Rightarrow \frac{q(x)}{p(x)}$$

Finally we show that $\frac{p(x)}{q(x)}$

We have O = q(A)B

$$= (A^m + b_1 A^{m-1} + \dots + b_m I)B$$

$$= [T^{m}(I) + b_{1}T^{m-1}(I) + \dots + b_{m}I]B$$

$$= T^m B + b_1 T^{m-1} B + \dots + b_m I) B$$

$$=q(T)=0$$

Since p(x) is the minimal polynomial for T and q(T) = 0

so
$$\frac{p(x)}{q(x)}$$

 $\Rightarrow p(x) = q(x)$ (*ic*) minimal polynomial for T is the minimal polynomial for A.

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^3 each vector of which is characteristic vector of T.

Solution. Characteristic equation of T is det(A - xI) = 0

$$\begin{vmatrix} -9-x & 4 & 4 \\ -8 & 3-x & 4 \\ -16 & 8 & 7-x \end{vmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} -1-x & 4 & 4 \\ -1-x & 3-x & 4 \\ -1-x & 8 & 7-x \end{bmatrix} = 0 \text{ by } c_1 + c_2 + c_3$$
or $-(1+x) \begin{bmatrix} 1 & 4 & 4 \\ 1 & 3-x & 4 \\ 1 & 8 & 7-x \end{bmatrix} = 0$
or $-(1+x) \begin{bmatrix} 1 & 4 & 4 \\ 0 & -1-x & 0 \\ 0 & 4 & 3-x \end{bmatrix} = 0$

or (1+x)(1+x)(3-x) = 0

Hence the characteristic values of T are 3, -1, -1. The characteristic vector corresponding to x = 3

is given by

$$(A - 3I)X = 0$$

$$\Rightarrow \begin{bmatrix} -12 & 4 & 4 \\ -8 & 0 & 4 \\ -16 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

or
$$\begin{bmatrix} -4 & 4 & 0 \\ 0 & -8 & 4 \\ 0 & -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

by $R_1 \to R_1 - R_2; \quad R_2 \to R_2 - 2R_1; \quad R_3 \to R_3 - 4R_1$
 $\begin{bmatrix} -4 & 4 & 0 \\ 0 & -8 & 4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
by $R_3 = R_3 - R_2$

$$\Rightarrow -x_1 + x_2 = 0, \quad -2X_2 + x_3 = 0$$

These equations are satisfied by $x_1 = 1$, $x_2 = 1$, $x_3 = 2$. an eigen vector corresponding to eigen

value
$$x = 3$$
 is

$$X_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

The eigen vector corresponding to the given value x = -1 is given by

$$(A+I)(X) = 0$$

$$\begin{bmatrix} -8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
or
$$\begin{bmatrix} -8 & 4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

by $R_2 \rightarrow R_2 - R_1$ $R_3 \rightarrow R_3 - 2R_1$

from the above equation we get

 $-2x_1 + x_2 + x_3 = 0$ taking $x_2 = 0$, we get $x_1 = 1, x_3 = 2$

taking $x_3 = 0$ we get $x_1 = 1, x_2 = 2$

Hence, 2 L.I characteristic vectors corresponding to characteristic values x = -1 are $X_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ $X_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$

clearly; X_1 , X_2 , X_3 are linearly independent over \mathbb{R} and so the set $\{X_1, X_2, X_3\}$

©Copyright Reserved IIT Delhi

constitutes a basis of \mathbb{R}^3 .

Hence T is diagonalizable. indeed for

$$p = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$
$$P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

5. Find the characteristic polynomials for the identity operator and zero operator on an n- dimensional vector space.

٦

Solution. The characteristic polynomial of the identity operator I on V is

The characteristic polynomial of the zero operator O in V is