Self Evaluation Test

1. Let λ be an eigen value of a linear operator T on a vector space $V(\mathbb{F})$. Let V_{λ} denote the set of all eigen vectors of T corresponding to eigen value λ . Prove that V_{λ} is a subspace of $V(\mathbb{F})$.

Solution. Here $V_{\lambda} = \{v \in V \mid v \text{ is an eigen vector of } T\}$.

$$= \{ v \in V | T(v) = \lambda v \}.$$

Given is that λ be an eigen value of T.

 $\therefore \exists$ a non zero vector v' such that $T(v') = \lambda v'$ so that $v' \in V_{\lambda} \Rightarrow V_{\lambda} \neq \phi$

i.e. V_{λ} is non-empty set.

let $v_1, v_2 \in V_{\lambda}$ and $\alpha, \beta \in \mathbb{F}$

Since $v_1, v_2 \in V_{\lambda} \Rightarrow Tv_1 = \lambda v_1$ and $Tv_2 = \lambda v_2$

Now $T(\alpha v_1 + \beta v_2) = T(\alpha v_1) + T(\beta v_2)$

$$= \alpha T(v_1) + \beta T(v_2)$$

$$= \alpha\lambda(v_1) + \beta\lambda(v_2)$$

=
$$\lambda(\alpha v_1 + \beta v_2)$$

$$\therefore T(\alpha v_1 + \beta v_2) = \lambda(\alpha v_1 + \beta v_2)$$

- $\Rightarrow \alpha v_1 + \beta v_2$ is an eigen vector corresponding to eigen value λ
- $\Rightarrow \alpha v_1 + \beta v_2 \in V_\lambda$

Hence V_{λ} is a subspace of V.

- Prove that the non zero eigen vectors corresponding to distinct eigen values of a linear operator are linearly independent.
- **Solution.** let v_1, v_2, \ldots, v_m be m non-zero eigen vectors of a linear operator $T: V \to V$ corresponding to distinct eigen values $\lambda_1, \lambda_2, \ldots, \lambda_m$ respectively.

$$\therefore T(v_1) = \lambda_1 v_1, \ T(v_2) = \lambda_2 v_2, \ \dots, \ T(v_m) = \lambda_m v_m \tag{1}$$

We want to show that v_1, v_2, \ldots, v_m are L.I. vectors. We shall prove this result by induction on m.

Step I. Let m = 1

Then v_1 is L.I. since v_1 is a non-zero vector.

: the result is true for m = 1.

©Copyright Reserved IIT Delhi

Step III. Now, we shall show the result is true for m vectors.

Let
$$a_1v_1 + a_2v_2 + \ldots + a_mv_m = 0$$
 (2)
 $\Rightarrow T(a_1v_1 + a_2v_2 + \ldots + a_mv_m) = T(0)$
 $\Rightarrow a_1T(v_1) + a_2T(v_2) + \ldots + a_mT(v_m) = 0$ [Since *T* is a L.T.]
 $\Rightarrow a_1(\lambda_1v_1) + a_2(\lambda_2v_2) + \ldots + a_mT(\lambda_mv_m) = 0$ [Using (1)]
 $\Rightarrow a_1\lambda_1v_1 + a_2\lambda_2v_2 + \ldots + a_m\lambda_mv_m = 0$ (3)
Multiplying (2) on both sides by λ_m , we get
 $a_1\lambda_mv_1 + a_2\lambda_mv_2 + \ldots + a_m\lambda_mv_m = 0$ (4)
 \therefore eq(3)-eq(4) gives
 $a_1(\lambda_1 - \lambda_m)v_1 + a_2(\lambda_2 - \lambda_m)v_2 + \ldots + a_{m-1}(\lambda_{m-1} - \lambda_m)v_{m-1} = 0$
 $\Rightarrow a_1(\lambda_1 - \lambda_m) = 0, \ a_2(\lambda_2 - \lambda_m) = 0, \ldots, a_{m-1}(\lambda_{m-1} - \lambda_m) = 0$
 $(\because v_1, v_2, \ldots, v_{m-1} \text{ are L.I. because of Step II})$

 $\Rightarrow a_1 = 0, a_2 = 0, \dots, a_{m-1} = 0$

 $(:: \lambda_i - \lambda_m \neq 0 \text{ for } 1 \leq i \leq m - 1 \text{ as } \lambda_i \text{ are distinct})$

putting these in (2), we get

$$a_m v_m = 0$$

 $\Rightarrow a_m = 0 \quad [\because v_m \neq 0]$

Thus we have $a_1 = a_2 = ... = a_m = 0$

 \therefore the vectors v_1, v_2, \ldots, v_m are L.I.

Hence the result

3. Let λ be an eigen value of an invertible operator T on a vector space $V(\mathbb{F})$. Prove that λ^{-1} is an eigen value of T^{-1}

Solution. Given T be invertible operator.

 \Rightarrow T is non-singular.

- $\Rightarrow \exists$ an eigen value $\lambda \neq 0$.
- $\Rightarrow \lambda^{-1}$ exists.

Since λ is an eigen value of T, therefore there exists a non zero vector $v \in V$ such that.

 $T(v) = \lambda v$

operating T^{-1} on both sides

 $\Rightarrow T^{-1}(T(v)) = T^{-1}(\lambda v)$ $\Rightarrow v = \lambda T^{-1}(v)$ $\Rightarrow \frac{1}{\lambda}v = T^{-1}(v)$ or $T^{-1}(v) = \frac{1}{\lambda}v = \lambda^{-1}(v)$ $\Rightarrow \lambda^{-1} \text{ is an eigen value of } T^{-1}$

Hence the result.

4. Let V be vector space of all real valued continuous functions. Let T be a L.O. on V such that $T(f(x)) = \int_0^x f(t) dt$. Show T has no eigen values.

Solution. If λ is an eigen value of T, then by definition of eigen value, \exists a non zero $f(x) \in V$ such

that

$$T(f(x)) = \lambda f(x)$$

$$\Rightarrow \int_0^x f(t) \, dt = \lambda f(x)$$
(1)

Differentiating both sides we get $f(x) = \lambda f'(x)$

$$\Rightarrow \frac{f'(x)}{f(x)} = \frac{1}{\lambda}$$

Integrating, we get

$$\begin{split} \log f(x) &= \frac{x}{\lambda} + C, \ C \ \text{is constant of integration} \\ \Rightarrow \ f(x) &= e^{\frac{x}{\lambda} + C} = e^C e^{\frac{x}{\lambda}} = a e^{\frac{x}{\lambda}} \ \text{say} \\ \therefore \ f(0) &= a e^0 = a \\ \text{so that} \ f(x) &= f(0) e^{\frac{x}{\lambda}} \end{split}$$

changing variable x by t we have

$$f(t) = f(0) \ e^{\frac{t}{\lambda}}$$

integrating both sides from 0 to x we get

$$\begin{split} &\int_{0}^{x} f(t) \ \mathrm{dt} = f(0) \int_{0}^{x} e^{\frac{t}{\lambda}} \ \mathrm{dt} \\ &\lambda f(x) = f(0) \left[\frac{e^{\frac{t}{\lambda}}}{\frac{1}{\lambda}} \right]_{0}^{x} \ (\text{using (i) for L.H.S}) \\ &\lambda f(0) e^{\frac{x}{\lambda}} = f(0) \lambda(e^{\frac{x}{\lambda}} - 1) \ (\text{using (ii) for L.H.S}) \\ &e^{\frac{x}{\lambda}} = e^{\frac{x}{\lambda}} - 1 \end{split}$$

©Copyright Reserved IIT Delhi

(ii)

 $\Rightarrow 0 = -1$ which is wrong.

So that T has no eigen values.

5. Let $T: V \to V$ be a Linear operator on a finite dimensional vector space $V(\mathbb{F})$. Prove that the number of eigen values of T cannot exceed the dimension of vector space $V(\mathbb{F})$.

Solution. Given V is a finite dimensional vector space over \mathbb{F} .

Let us assume $\dim V = n$.

Now λ is an eigen value of T iff det $(\lambda I - T) = 0$

i.e., the eigen values of T are the roots of equation

 $\det(xI - T) = 0$

Since $\dim V = n$, so any matrix representation of T is of order $n \times$.

 \therefore the matrix representation of xI - T is also of order $n \times n$.

 \Rightarrow The det (xI - T) is a polynomial of degree n in x.

But the eigen values of T are roots of this polynomial [because of (i)]

: number of eigen values cannot exceed the degree n of the polynomial det(xI - T).

Hence the number of eigen values of T cannot exceed the dimV.

(1)