Self Evaluation Test

1. Let λ be an eigen value of a linear operator T on a vector space $V(\mathbb{F})$. Let V_{λ} denote the set of all eigen vectors of T corresponding to eigen value λ. Prove that V_{λ} is a subspace of $V(\mathbb{F})$.

Solution. Here $V_{\lambda}=\{v \in V \mid v$ is an eigen vector of $T\}$.

$$
=\{v \in V \mid T(v)=\lambda v\} .
$$

Given is that λ be an eigen value of T.
$\therefore \exists$ a non zero vector v^{\prime} such that $T\left(v^{\prime}\right)=\lambda v^{\prime}$ so that $v^{\prime} \in V_{\lambda} \Rightarrow V_{\lambda} \neq \phi$
i.e. V_{λ} is non-empty set.
let $v_{1}, v_{2} \in V_{\lambda}$ and $\alpha, \beta \in \mathbb{F}$
Since $v_{1}, v_{2} \in V_{\lambda} \Rightarrow T v_{1}=\lambda v_{1}$ and $T v_{2}=\lambda v_{2}$
Now $T\left(\alpha v_{1}+\beta v_{2}\right)=T\left(\alpha v_{1}\right)+T\left(\beta v_{2}\right)$

$$
=\alpha T\left(v_{1}\right)+\beta T\left(v_{2}\right)
$$

$$
=\alpha \lambda\left(v_{1}\right)+\beta \lambda\left(v_{2}\right)
$$

$$
=\quad \lambda\left(\alpha v_{1}+\beta v_{2}\right)
$$

$\therefore T\left(\alpha v_{1}+\beta v_{2}\right)=\lambda\left(\alpha v_{1}+\beta v_{2}\right)$
$\Rightarrow \alpha v_{1}+\beta v_{2}$ is an eigen vector corresponding to eigen value λ
$\Rightarrow \alpha v_{1}+\beta v_{2} \in V_{\lambda}$
Hence V_{λ} is a subspace of V.
2. Prove that the non zero eigen vectors corresponding to distinct eigen values of a linear operator are linearly independent.

Solution. let $v_{1}, v_{2}, \ldots, v_{m}$ be m non-zero eigen vectors of a linear operator $T: V \rightarrow V$ corresponding to distinct eigen values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ respectively.
$\therefore T\left(v_{1}\right)=\lambda_{1} v_{1}, T\left(v_{2}\right)=\lambda_{2} v_{2}, \ldots, T\left(v_{m}\right)=\lambda_{m} v_{m}$
We want to show that $v_{1}, v_{2}, \ldots, v_{m}$ are L.I. vectors. We shall prove this result by induction on m.
Step I. Let $m=1$
Then v_{1} is L.I. since v_{1} is a non-zero vector.
\therefore the result is true for $m=1$.

Step II. Assume the result is true for the number of vectors less than m.

Step III. Now, we shall show the result is true for m vectors.

$$
\begin{align*}
\text { Let } a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{m} v_{m} & =0 \tag{2}\\
\Rightarrow T\left(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{m} v_{m}\right) & =T(0) \\
\Rightarrow a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)+\ldots+a_{m} T\left(v_{m}\right) & =0 \quad[\text { Since } T \text { is a L.T.] } \\
\Rightarrow a_{1}\left(\lambda_{1} v_{1}\right)+a_{2}\left(\lambda_{2} v_{2}\right)+\ldots+a_{m} T\left(\lambda_{m} v_{m}\right) & =0[\text { Using }(1)] \\
\Rightarrow a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2} v_{2}+\ldots+a_{m} \lambda_{m} v_{m} & =0 \tag{3}
\end{align*}
$$

Multiplying (2) on both sides by λ_{m}, we get
$a_{1} \lambda_{m} v_{1}+a_{2} \lambda_{m} v_{2}+\ldots+a_{m} \lambda_{m} v_{m}=0$
\therefore eq(3)-eq(4) gives
$a_{1}\left(\lambda_{1}-\lambda_{m}\right) v_{1}+a_{2}\left(\lambda_{2}-\lambda_{m}\right) v_{2}+\ldots+a_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right) v_{m-1}=0$
$\Rightarrow a_{1}\left(\lambda_{1}-\lambda_{m}\right)=0, a_{2}\left(\lambda_{2}-\lambda_{m}\right)=0, \ldots, a_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right)=0$

$$
\left(\because v_{1}, v_{2}, \ldots, v_{m-1} \text { are L.I. because of Step II }\right)
$$

$\Rightarrow a_{1}=0, a_{2}=0, \ldots, a_{m-1}=0$

$$
\left(\because \lambda_{i}-\lambda_{m} \neq 0 \text { for } 1 \leq i \leq m-1 \text { as } \lambda_{i} \text { are distinct }\right)
$$

putting these in (2), we get

$$
\begin{array}{rlcc}
a_{m} v_{m} & = & 0 \\
\Rightarrow a_{m} & =0 \quad\left[\because v_{m} \neq 0\right]
\end{array}
$$

Thus we have $a_{1}=a_{2}=\ldots=a_{m}=0$
\therefore the vectors $v_{1}, v_{2}, \ldots, v_{m}$ are L.I.
Hence the result
3. Let λ be an eigen value of an invertible operator T on a vector space $V(\mathbb{F})$. Prove that λ^{-1} is an eigen value of T^{-1}

Solution. Given T be invertible operator.
$\Rightarrow T$ is non-singular.
$\Rightarrow \exists$ an eigen value $\lambda \neq 0$.
$\Rightarrow \lambda^{-1}$ exists.
Since λ is an eigen value of T, therefore there exists a non zero vector $v \in V$ such that.

$$
T(v)=\lambda v
$$

operating T^{-1} on both sides

$$
\begin{aligned}
& \Rightarrow T^{-1}(T(v))=T^{-1}(\lambda v) \\
& \Rightarrow v=\lambda T^{-1}(v) \\
& \Rightarrow \frac{1}{\lambda} v=T^{-1}(v) \\
& \text { or } T^{-1}(v)=\frac{1}{\lambda} v=\lambda^{-1}(v) \\
& \Rightarrow \lambda^{-1} \text { is an eigen value of } T^{-1}
\end{aligned}
$$

Hence the result.
4. Let V be vector space of all real valued continuous functions. Let T be a L.O. on V such that $T(f(x))=\int_{0}^{x} f(t) \mathrm{dt}$. Show T has no eigen values.

Solution. If λ is an eigen value of T, then by definition of eigen value, \exists a non zero $f(x) \in V$ such that

$$
\begin{gather*}
T(f(x))=\lambda f(x) \\
\Rightarrow \quad \int_{0}^{x} f(t) \mathrm{dt}=\lambda f(x) \tag{1}
\end{gather*}
$$

Differentiating both sides we get $f(x)=\lambda f^{\prime}(x)$
$\Rightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{1}{\lambda}$
Integrating, we get
$\log f(x)=\frac{x}{\lambda}+C, C$ is constant of integration
$\Rightarrow f(x)=e^{\frac{x}{\lambda}+C}=e^{C} e^{\frac{x}{\lambda}}=a e^{\frac{x}{\lambda}}$ say
$\therefore f(0)=a e^{0}=a$
so that $f(x)=f(0) e^{\frac{x}{\lambda}}$
changing variable x by t we have
$f(t)=f(0) e^{\frac{t}{\lambda}}$
integrating both sides from 0 to x we get
$\int_{0}^{x} f(t) \mathrm{dt}=f(0) \int_{0}^{x} e^{\frac{t}{\lambda}} \mathrm{dt}$
$\lambda f(x)=f(0)\left[\frac{e^{\frac{t}{\lambda}}}{\frac{1}{\lambda}}\right]_{0}^{x}$ (using (i) for L.H.S)
$\lambda f(0) e^{\frac{x}{\lambda}}=f(0) \lambda\left(e^{\frac{x}{\lambda}}-1\right)$ (using (ii) for L.H.S)
$e^{\frac{x}{\lambda}}=e^{\frac{x}{\lambda}}-1$
$\Rightarrow 0=-1$ which is wrong.
So that T has no eigen values.
5. Let $T: V \rightarrow V$ be a Linear operator on a finite dimensional vector space $V(\mathbb{F})$. Prove that the number of eigen values of T cannot exceed the dimension of vector space $V(\mathbb{F})$.

Solution. Given V is a finite dimensional vector space over \mathbb{F}.
Let us assume $\operatorname{dim} V=n$.
Now λ is an eigen value of T iff $\operatorname{det}(\lambda I-T)=0$
i.e., the eigen values of T are the roots of equation

$$
\begin{equation*}
\operatorname{det}(x I-T)=0 \tag{1}
\end{equation*}
$$

Since $\operatorname{dim} V=n$, so any matrix representation of T is of order $n \times$.
\therefore the matrix representation of $x I-T$ is also of order $n \times n$.
\Rightarrow The $\operatorname{det}(x I-T)$ is a polynomial of degree n in x.
But the eigen values of T are roots of this polynomial [because of (i)]
\therefore number of eigen values cannot exceed the degree n of the polynomial $\operatorname{det}(x I-T)$.
Hence the number of eigen values of T cannot exceed the $\operatorname{dim} V$.

