Self Evaluation Test

1. Let T be a L.O. on V. If $T^{2}=0$, what can you say about the relation of the range of T to the null space of T ? Give an example of linear operator T of R^{2} such that $T^{2}=0$, but $T \neq 0$.

Solution.

$$
\begin{aligned}
T^{2}=0 & \Rightarrow T^{2}(v)=0 \forall v \in V \\
\Rightarrow T(T(V)) & =0 \forall v \in V \\
\Rightarrow T(V) & \in \operatorname{Ker} T \forall v \in V
\end{aligned}
$$

$$
\text { i.e. Range } T \quad \subseteq \quad \operatorname{Ker} T
$$

Define $T: R^{2} \rightarrow R^{2}$ such that,

$$
T\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right)
$$

T is Linear Operator. Since $T(2,2)=(2,0) \neq(0,0) \Rightarrow T \neq 0$. But

$$
\begin{aligned}
T^{2}\left(x_{1}, x_{2}\right) & =T\left(T\left(x_{1}, x_{2}\right)\right) \\
& =T\left(x_{2}, 0\right) \\
& =(0,0) \\
\Rightarrow T^{2} & =0
\end{aligned}
$$

2. Let T be a linear operator on V and let $\operatorname{Rank} T^{2}=\operatorname{Rank} T$, show that

$$
\text { Range } T \cap \text { Ker } T=\{0\}
$$

Solution. $T: V \rightarrow V, T^{2}: V \rightarrow V$ are Linear Transformations.
$\operatorname{Rank} T^{2}=\operatorname{dim} V-\operatorname{dim} \operatorname{Ker} T^{2}\left(\because \operatorname{Rank} T^{2}=\operatorname{Rank} T\right)$
$\Rightarrow \operatorname{dim} \operatorname{Ker} T=\operatorname{dim} \operatorname{Ker} T^{2}$
Let $x \in \operatorname{Ker} T \Rightarrow T x=0 \Rightarrow T^{2}(x)=T(0)=0$
$\Rightarrow x \in \operatorname{Ker} T^{2} \Rightarrow \operatorname{Ker} T \subseteq \operatorname{Ker} T^{2}$
$\Rightarrow \operatorname{Ker} T=\operatorname{Ker} T^{2}$ (as they have the same dim).
Now $x \in$ Range $T \cap \operatorname{Ker} T$

$$
\begin{aligned}
\Rightarrow T(x) & =0 \text { if } x=T(y) \text { for some } y \in V \\
\Rightarrow T(T y) & =0 \text { i.e. } T^{2}(y)=0 \\
\Rightarrow y \in \operatorname{ker} T^{2} & =\operatorname{Ker} T \\
\text { i.e. } T(y) & =0 \\
\Rightarrow x & =0 \\
\Rightarrow \operatorname{Ker} T \cap \operatorname{Range} T & =\{0\}
\end{aligned}
$$

3. Let T be a linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$.

Let $\beta=\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ and $\beta^{\prime}=\left\{\alpha_{1}=(1,2), \alpha_{2}=(1,-1)\right\}$ be ordered basis for R^{2}.
Find a matrix P such that $[T]_{\beta^{\prime}}=P^{-1}[T]_{\beta} P$.

Solution. $T(1,0)=(0,1) ; T(0,1)=(-1,0)$

$$
\begin{aligned}
& T(1,0)=0 . e_{1}+1 . e_{2} ; T(0,1)=-1 . e_{1}+0 . e_{2} \\
& \therefore[T]_{\beta}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& T\left(\alpha_{1}\right)=T(1,2)=(-2,1)=\frac{-1}{3} \alpha_{1}-\frac{5}{3} \alpha_{2} \\
& T\left(\alpha_{2}\right)=T(1,-1)=(1,1)=\frac{2}{3} \alpha_{1}-\frac{1}{3} \alpha_{2} \\
& \therefore[T]_{\beta}^{\prime}=\left[\begin{array}{cc}
\frac{-1}{3} & \frac{2}{3} \\
\frac{-5}{3} & \frac{-1}{3}
\end{array}\right]
\end{aligned}
$$

Define $S: R^{2} \rightarrow R^{2}$ such that

$$
S\left(e_{i}\right)=\alpha_{i} ; i=1,2
$$

Now $\alpha_{1}=(1,2)=1 . e_{1}+2 . e_{2}$ and $\alpha_{2}=(1,-1)=1 . e_{1}+(-1) e_{2}$

$$
\begin{aligned}
& S\left(\alpha_{1}\right)=1 . \alpha_{1}+2 . \alpha_{2} ; S\left(\alpha_{1}\right)=1 . \alpha_{1}+(-1) \cdot \alpha_{2} \\
& {[S]_{\beta^{\prime}}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]} \\
& P=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right] \\
& \text { and } P^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right] \\
& P^{-1}[T]_{\beta} P=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{-1}{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{-1}{3} & \frac{2}{3} \\
\frac{-5}{3} & \frac{-1}{3}
\end{array}\right] \\
& =[T]_{\beta^{\prime}}
\end{aligned}
$$

4. Let f_{1}, f_{2}, f_{3} be three linear functionals on R^{4} defined as follows:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+2 x_{2}+2 x_{3}+x_{4} \\
& f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{2}+x_{4} \\
& f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-2 x_{1}-4 x_{3}+3 x_{4}
\end{aligned}
$$

Determine the subspace W of R^{4} such that $f_{i}(w)=0 \forall w \in W ; i=1,2,3$

Solution Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in W$. Then $f_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0 \forall i=1,2,3$

$$
\begin{aligned}
\Rightarrow x_{1}+2 x_{2}+2 x_{3}+x_{4} & =0 \\
2 x_{2}-x_{4} & =0 \\
-2 x_{1}-4 x_{3}+3 x_{4} & =0 \\
{\left[\begin{array}{rrrr}
1 & 2 & 2 & 1 \\
0 & 2 & 0 & 1 \\
-2 & 0 & -4 & 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } & =0
\end{aligned}
$$

By elementary row transformations we get:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0} \\
& \Rightarrow x_{1}+2 x_{3}=0 ; x_{2}=0 ; x_{4}=0 \\
& \therefore\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-2 x_{3}, 0, x_{3}, 0\right) \\
& =x_{3}(-2,0,1,0)
\end{aligned}
$$

$\therefore W$ is spanned by $(-2,0,1,0)$.
5. Let $f, g \in V^{\prime}$ such that $f(v)=0 \Rightarrow g(v)=0$, prove that $g=c f$ for some $c \in F,\left(V^{\prime}\right.$ is dual space of V).

Solution. If $f=0$, then $g=0=c f$; for any $c \in F$.
Let $f \neq 0$, then there exist $v \neq 0$ in V such that $f(v) \neq 0$.
let $c=\frac{g(v)}{f(v)}, h=g-c f$ and $x \in V$ and $\alpha=\frac{f(x)}{f(v)}$.
Then $f(x-\alpha v)=f(x)-\alpha f(v)=0$

$$
\begin{aligned}
\Rightarrow x-\alpha v & \in \operatorname{Ker} f \\
\Rightarrow x-\alpha v & =y \in \operatorname{Ker} f \\
\Rightarrow x & =y+\alpha v \\
h(x) & =g(x)-c f(x) \\
& =g(y)+\alpha g(v)-c f(y)-c \alpha f(v) . \\
& =\alpha g(v)-c \alpha f(v) \text { as } \\
y \in \operatorname{Ker} f & \Rightarrow y \in \operatorname{Ker} g \\
& =\frac{f(x)}{f(v)} g(v)-\frac{g(v)}{f(v)} \cdot f(x) \\
& =0 \forall x \in V
\end{aligned}
$$

$$
\therefore h=0 \Rightarrow g=c f
$$

Hence the result follows.

