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1Module 1

Self Evaluation Test

1. If a3 =

 1 2

0 0

, a2 =

 −1 0

1 3

, a1 =

 2 3

−2 0

, a0 =

 0 −1

1 2

 and µ1 =

 2 1

1 1

,

µ0 =

 1 −1

0 2

 where a(θ) = a0 + a1θ + a2θ
2 + a3θ

3 r(θ) = r0 + r1(θ) then the right quotient

is q(θ) = q0 + q1(θ) + q2(θ)2 where q2 =

 −1 3

0 0

, a1 =

 7 −14

−2 5

, a0 =

 −43 81

12 −24


and the right remainder is r0 =

 43 −206

−11 62

 on the right division of a(θ) by r(θ).

Solution. We have to prove that q(θ) = q0 + q1(θ) + q2(θ)2 is the right quotient and r(θ) = r0 is the

right remainder on the right division of a(θ) by r(θ).

i.e. a(θ) = q(θ)µ(θ) + r(θ) (1)

with degr(θ) < degµ(θ)

Given µ(θ) = µ0 + µ1(θ)

=

 1 −1

0 2

 +

 2 1

1 1

 θ

and a(θ) = a0 + a1(θ) + a2θ
2 + a3θ

3

=

 0 −1

1 2

 +

 2 3

−2 0

 θ +

 −1 0

1 3

 θ2 +

 1 2

0 0

 θ3

Now R.H.S. of equation (1) is

q(θ)µ(θ) + r(θ) = (q0 + q1θ + q2θ
2)(µ0 + µ1θ) + r0

=


 −43 81

12 −24

 +

 7 −14

−2 5

 θ +

 −1 3

0 0

 θ2

 ·


 1 −1

0 2

 +

 2 1

1 1

 θ

 +

 43 −206

−11 62
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=

 −43 81

12 −24


 1 −1

0 2

 +


 −43 81

12 −24


 2 1

1 1

 +

 7 −14

−2 5


 1 −1

0 2


 θ +


 7 −14

−2 5


 2 1

1 1

 +

 −1 3

0 0


 1 −1

0 2


 θ2

+

 −1 3

0 0


 2 1

1 1

 θ3 +

 43 −206

−11 62


=

 0 −1

1 2

 +

 2 3

−2 0

 θ +

 −1 0

1 3

 θ2 +

 1 2

0 0

 θ3

= a0 + a1θ + a2θ
2 + a3θ

3

= L.H.S.

∴ q(θ) is right quotient and r(θ) = r0 is right remainder.

2. The ring of polynomials over a field is a Euclidean domain.

Solution. Let f(x) be the ring of polynomials over a field F .

Let g be the function defined by:

g : F (x)/{0} → N

g[f(x)] =degf(x) for all f(x) 6= 0 ∈ F [x]

Thus we have assigned a non negative integer to every non zero element f(x) in F [x]

Let f(x) and h(x) be two non zero polynomial and k(x) = f(x)h(x) is also a non zero polynomial.

Then deg(k(x)) = deg(f(x)h(x))

= degf(x) + degh(x)

⇒ deg(k(x)) ≥ deg(f(x)) [∵ deg(h(x)) ≥ 0]

⇒ g(k(x)) ≥ g(f(x))

Again let f(x) ∈ F [x] and 0 6= h(x) ∈ F [x]

There exist two polynomials q(x) and r(x) in F [x] such that f(x) = q(x)h(x) + r(x)

where either r(x) = 0 or degr(x) <degh(x) i.e.

either r(x) = 0 or g(r(x)) < g(h(x)).

Hence the ring of polynomials over a field is a Euclidean domain.

3. Q[
√

d] := {a + b
√

d|a, b ∈ Q} is a field where d 6= 0 is a square free integer.

Solution. Let a1 + b1

√
d and a2 + b2

√
d both are the elements of Q[

√
d]. Then a1, b1, a2, b2 ∈ Q.
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Now (a1 + b1

√
d)+(a2 + b2

√
d)=(a1 + a2)+(b1 + b2)

√
d ∈ Q[

√
d] [∵ a1 + a2 ∈ Q and b1 + b2 ∈ Q]

also (a1 + b1

√
d) + (a2 + b2

√
d) = (a1a2 + db1b2) + (a1b2 + a2b1)

√
d ∈ Q[

√
d]

Since a1a2 + db1b2 ∈ Q and a1b2 + a2b1 ∈ Q

⇒ Q[
√

d] is closed w.r.t addition and multiplication.

Here all the elements of Q[
√

d] are real numbers and we know that addition and multiplication are

both associative as well as commutative compositions in the set of real number.

Existence of identity:- 0 + 0
√

d ∈ Q[
√

d] since 0 ∈ Q.

Now if a + b
√

d ∈ Q[
√

d] then (0 + 0
√

d) + (a + b
√

d) = (0 + a) + (0 + b)
√

d = a + b
√

d.

⇒ (0 + 0
√

d) is identity.

Again if a + b
√

d ∈ Q[
√

d] then (−a) + (−b)
√

d ∈ Q[
√

d] and we have

((−a) + (−b)
√

d) + (a + b
√

d) = 0 + 0
√

d

Therefore each element of Q[
√

d] possess additive inverse.

Further in the set of real number, multiplication is distributive w.r.t. addition.

Again if 1 + 0
√

d ∈ Q[
√

d] we have

(1 + 0
√

d)(a + b
√

d) = a + b
√

d = (a + b
√

d)(1 + 0
√

d)

⇒ (1 + 0
√

d) is multiplicative identity.

∴ Q[
√

d] is a commutative ring with unity.

Now Q[
√

d] will be a field if each non zero element of Q[
√

d] possesses multiplicative inverse.

Let a + b
√

d be any non zero element of this ring. Then
1

a + b
√

d
=

a− b
√

d

a2 − db2

=
a

a2 − db2
+

(
−b

a2 − db2

)√
d

Now if a, b ∈ Q then a2 = db2 only if a = 0, b = 0

Since here atleast one of all the rational numbers a& b is not zero(∵ a+b
√

d is a non zero element).

⇒ a2 6= db2

∴
a

a2 − db2
and

−b

a2 − db2
are both rational numbers and atleast one of them is not zero.

∴

(
a

a2 − db2

)
+

(
−b

a2 − db2

)√
d is a non-zero element of Q[

√
d] and is multiplicative inverse of

a + b
√

d.

Hence the given system is a field.

4. Let K[θ] be a ring of polynomials and let a(θ) and b(θ) be any two non zero elements of K[θ]. Then

(a) deg[a(θ) + b(θ)] ≤ max[dega(θ),degb(θ)] = max(n, m)
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(b) deg[a(θ)b(θ)] ≤ dega(θ) + degb(θ) if a(θ)b(θ) 6= 0.

Solution. (a) Let a(θ) = a0 + a1θ + a2θ
2 + . . . + anθn, an 6= 0.

b(θ) = b0 + b1θ + b2θ
2 + . . . + bmθm, bm 6= 0 be two elements of K[θ]

dega(θ) = n and degb(θ) = m.

Now from the definition of sum of two polynomials, it is obvious that if a(θ) + b(θ) 6= 0 then,

deg(a(θ) + b(θ)) =


max(n, m), if n 6= m;

n, if n = m and an + bm 6= 0;

< n, if n = m and an + bm = 0.

.

∴ deg[a(θ) + b(θ)] ≤ max[dega(θ),degb(θ)] = max(n, m).

(b) Again a(θ)b(θ) = a0b + (a0b1 + a1b0)θ + . . . + anbmθn+m

If a(θ)b(θ) 6= 0 then a(θ)b(θ) has unique degree.

If anbm 6= 0 then deg[a(θ)b(θ)] = n + m =dega(θ)+degb(θ).

If anbm = 0 then deg[a(θ)b(θ)] < n + m.

∴ deg[a(θ)b(θ)] ≤ dega(θ) + degb(θ).

5. K =


 α β

−β α

 | α, β ∈ C

, let α = a + ιb and β = c + ιd where a, b, c, d ∈ R.

K =


 a + ιb c + ιd

−(c− ιd) a− ιb

 | a, b, c, d ∈ R

 is a skew field not a field.

Solution. Let A =

 a + ιb c + ιd

−c + ιd a− ιb

 and B =

 p + ιq r + ιs

−r + ιs p− ιq


A + B =

 (a + p) + ι(b + q) (c + r) + ι(d + s)

−(c + r) + ι(d + s) (a + p)− ι(b + q)

 ∈ K

Also, AB =

 (a + ιb)(p + ιq) + (c + ιd)(−r + ιs) (a + ιb)(r + ιs) + (c + ιd)(p− ιq)

(−c + ιd)(p + ιq)) + (a− ιb)(−r + ιs) (−c + ιd)(r + ιs)) + (a− ιb)(p− ιq)


=

 (ap− bq − cr − ds) + ι(aq + bp + cs− dr) (ar − bs + cp + dq) + ι(as + br − cq + dp)

−(cp + dq + ar − bs) + i(dp− cq + as + br) (−cr − ds + ap− bq)− i(cs− dr + aq + bp)


which is obviously an element of k.

∴ k is closed with respect to addition and multiplication.

Matrix addition is commutative as well as associative also.
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Additive identity:- The zero matrix

 0 + ι0 0 + ι0

−0 + ι0 0− ι0

 is additive identity and so it is the zero

element of k.

Additive inverse:- A =

 a + ιb c + ιd

−c + ιd a− ιb

 ∈ K then obviously−A =

 −a− ιb −c− ιd

c− ιd −a + ιb

 ∈ K

⇒ each element of k possesses additive inverse.

Further matrix multiplication is associative and distributive with respect to addition.

⇒ k is a ring with respect to addition and multiplication of matrices.

Existence of multiplicative identity:- 1 + ι0 0 + ι0

−0 + ι0 1− ι0

 =

 1 0

0 1

 ∈ K

Thus K is a ring with unity.

Existence of multiplicative inverse of each non-zero element of K.

Let A =

 a + ιb c + ιd

−c + ιd a− ιb

 ∈ K be any non-zero element i.e. a, b, c, d are not all equal to zero.

|A| = a2 + b2 + c2 + d2 6= 0

⇒ A is non singular and is therefore inveritble.

Now A−1 = 1
|A|Adj.A = 1

|A|

 a− ιb −c + ιd

c− ιd a + ιb

 ∈ K ∴ K is a skew field. Now K is not a

field i.e. multiplication is not commutative for example let A =

 3 + 4ι 5 + 6ι

−5 + ι6 3− ι4

 ∈ K and

B =

 1 + ι0 1 + ι0

−1 + ι0 1− ι0

 ∈ K

then AB =

 −2− 2ι 8 + 10ι

−8 + 10ι −2 + 2ι

 and BA =

 −2 + 10ι 8 + 2ι

−8 + 2ι −2− 10ι


∴ AB 6= BA ⇒ M is not a field.
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