Self Evaluation Test

1. If $a_{3}=\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right), a_{2}=\left(\begin{array}{cc}-1 & 0 \\ 1 & 3\end{array}\right), a_{1}=\left(\begin{array}{cc}2 & 3 \\ -2 & 0\end{array}\right), a_{0}=\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ and $\mu_{1}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$,
$\mu_{0}=\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)$ where $a(\theta)=a_{0}+a_{1} \theta+a_{2} \theta^{2}+a_{3} \theta^{3} r(\theta)=r_{0}+r_{1}(\theta)$ then the right quotient
is $q(\theta)=q_{0}+q_{1}(\theta)+q_{2}(\theta)^{2}$ where $q_{2}=\left(\begin{array}{cc}-1 & 3 \\ 0 & 0\end{array}\right), a_{1}=\left(\begin{array}{cc}7 & -14 \\ -2 & 5\end{array}\right), a_{0}=\left(\begin{array}{cc}-43 & 81 \\ 12 & -24\end{array}\right)$
and the right remainder is $r_{0}=\left(\begin{array}{cc}43 & -206 \\ -11 & 62\end{array}\right)$ on the right division of $a(\theta)$ by $r(\theta)$.

Solution. We have to prove that $q(\theta)=q_{0}+q_{1}(\theta)+q_{2}(\theta)^{2}$ is the right quotient and $r(\theta)=r_{0}$ is the right remainder on the right division of $a(\theta)$ by $r(\theta)$.
i.e. $a(\theta)=q(\theta) \mu(\theta)+r(\theta)$
with $\operatorname{deg} r(\theta)<\operatorname{deg} \mu(\theta)$

$$
\begin{aligned}
\text { Given } \mu(\theta) & =\mu_{0}+\mu_{1}(\theta) \\
& =\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)+\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \theta \\
\text { and } a(\theta) & =a_{0}+a_{1}(\theta)+a_{2} \theta^{2}+a_{3} \theta^{3} \\
& =\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)+\left(\begin{array}{cc}
2 & 3 \\
-2 & 0
\end{array}\right) \theta+\left(\begin{array}{cc}
-1 & 0 \\
1 & 3
\end{array}\right) \theta^{2}+\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \theta^{3}
\end{aligned}
$$

Now R.H.S. of equation (1) is

$$
\begin{aligned}
q(\theta) \mu(\theta)+r(\theta)= & \left(q_{0}+q_{1} \theta+q_{2} \theta^{2}\right)\left(\mu_{0}+\mu_{1} \theta\right)+r_{0} \\
= & \left\{\left(\begin{array}{cc}
-43 & 81 \\
12 & -24
\end{array}\right)+\left(\begin{array}{cc}
7 & -14 \\
-2 & 5
\end{array}\right) \theta+\left(\begin{array}{cc}
-1 & 3 \\
0 & 0
\end{array}\right) \theta^{2}\right\} \cdot\left\{\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)+\right. \\
& \left.\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \theta\right\}+\left(\begin{array}{cc}
43 & -206 \\
-11 & 62
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\begin{array}{cc}
-43 & 81 \\
12 & -24
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)+\left\{\left(\begin{array}{cc}
-43 & 81 \\
12 & -24
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)+\left(\begin{array}{cc}
7 & -14 \\
-2 & 5
\end{array}\right)\right. \\
& \left.\left(\begin{array}{ll}
1 & -1 \\
0 & 2
\end{array}\right)\right\} \theta+\left\{\left(\begin{array}{cc}
7 & -14 \\
-2 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)+\left(\begin{array}{cc}
-1 & 3 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & -1 \\
0 & 2
\end{array}\right)\right\} \theta^{2} \\
& +\left(\begin{array}{cc}
-1 & 3 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right) \theta^{3}+\left(\begin{array}{cc}
43 & -206 \\
-11 & 62
\end{array}\right) \\
= & \left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)+\left(\begin{array}{cc}
2 & 3 \\
-2 & 0
\end{array}\right) \theta+\left(\begin{array}{cc}
-1 & 0 \\
1 & 3
\end{array}\right) \theta^{2}+\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \theta^{3} \\
= & a_{0}+a_{1} \theta+a_{2} \theta^{2}+a_{3} \theta^{3} \\
= & \text { L.H.S. }
\end{aligned}
$$

$\therefore q(\theta)$ is right quotient and $r(\theta)=r_{0}$ is right remainder.
2. The ring of polynomials over a field is a Euclidean domain.

Solution. Let $f(x)$ be the ring of polynomials over a field F.
Let g be the function defined by:

$$
\begin{aligned}
& g: F(x) /\{0\} \rightarrow \mathbb{N} \\
& g[f(x)]=\operatorname{deg} f(x) \text { for all } f(x) \neq 0 \in F[x]
\end{aligned}
$$

Thus we have assigned a non negative integer to every non zero element $f(x)$ in $F[x]$
Let $f(x)$ and $h(x)$ be two non zero polynomial and $k(x)=f(x) h(x)$ is also a non zero polynomial.
Then $\operatorname{deg}(k(x))=\operatorname{deg}(f(x) h(x))$

$$
\begin{aligned}
& =\operatorname{deg} f(x)+\operatorname{degh}(x) \\
\Rightarrow \operatorname{deg}(k(x)) & \geq \operatorname{deg}(f(x)) \quad[\because \operatorname{deg}(h(x)) \geq 0] \\
\Rightarrow g(k(x)) & \geq g(f(x))
\end{aligned}
$$

Again let $f(x) \in F[x]$ and $0 \neq h(x) \in F[x]$
There exist two polynomials $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) h(x)+r(x)$
where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} h(x)$ i.e.
either $r(x)=0$ or $g(r(x))<g(h(x))$.

Hence the ring of polynomials over a field is a Euclidean domain.
3. $Q[\sqrt{d}]:=\{a+b \sqrt{d} \mid a, b \in Q\}$ is a field where $d \neq 0$ is a square free integer.

Solution. Let $a_{1}+b_{1} \sqrt{d}$ and $a_{2}+b_{2} \sqrt{d}$ both are the elements of $Q[\sqrt{d}]$. Then $a_{1}, b_{1}, a_{2}, b_{2} \in Q$.

Now $\left(a_{1}+b_{1} \sqrt{d}\right)+\left(a_{2}+b_{2} \sqrt{d}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \sqrt{d} \in Q[\sqrt{d}]\left[\because a_{1}+a_{2} \in Q\right.$ and $\left.b_{1}+b_{2} \in Q\right]$
also $\left(a_{1}+b_{1} \sqrt{d}\right)+\left(a_{2}+b_{2} \sqrt{d}\right)=\left(a_{1} a_{2}+d b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{d} \in Q[\sqrt{d}]$
Since $a_{1} a_{2}+d b_{1} b_{2} \in Q$ and $a_{1} b_{2}+a_{2} b_{1} \in Q$
$\Rightarrow Q[\sqrt{d}]$ is closed w.r.t addition and multiplication.
Here all the elements of $Q[\sqrt{d}]$ are real numbers and we know that addition and multiplication are both associative as well as commutative compositions in the set of real number.

Existence of identity:- $0+0 \sqrt{d} \in Q[\sqrt{d}]$ since $0 \in Q$.
Now if $a+b \sqrt{d} \in Q[\sqrt{d}]$ then $(0+0 \sqrt{d})+(a+b \sqrt{d})=(0+a)+(0+b) \sqrt{d}=a+b \sqrt{d}$.
$\Rightarrow(0+0 \sqrt{d})$ is identity.
Again if $a+b \sqrt{d} \in Q[\sqrt{d}]$ then $(-a)+(-b) \sqrt{d} \in Q[\sqrt{d}]$ and we have

$$
((-a)+(-b) \sqrt{d})+(a+b \sqrt{d})=0+0 \sqrt{d}
$$

Therefore each element of $Q[\sqrt{d}]$ possess additive inverse.
Further in the set of real number, multiplication is distributive w.r.t. addition.
Again if $1+0 \sqrt{d} \in Q[\sqrt{d}]$ we have

$$
(1+0 \sqrt{d})(a+b \sqrt{d})=a+b \sqrt{d}=(a+b \sqrt{d})(1+0 \sqrt{d})
$$

$\Rightarrow(1+0 \sqrt{d})$ is multiplicative identity.
$\therefore Q[\sqrt{d}]$ is a commutative ring with unity.
Now $Q[\sqrt{d}]$ will be a field if each non zero element of $Q[\sqrt{d}]$ possesses multiplicative inverse.
Let $a+b \sqrt{d}$ be any non zero element of this ring. Then

$$
\begin{aligned}
\frac{1}{a+b \sqrt{d}} & =\frac{a-b \sqrt{d}}{a^{2}-d b^{2}} \\
& =\frac{a}{a^{2}-d b^{2}}+\left(\frac{-b}{a^{2}-d b^{2}}\right) \sqrt{d}
\end{aligned}
$$

Now if $a, b \in Q$ then $a^{2}=d b^{2}$ only if $a=0, b=0$
Since here atleast one of all the rational numbers $a \& b$ is not zero $(\because a+b \sqrt{d}$ is a non zero element $)$.
$\Rightarrow a^{2} \neq d b^{2}$
$\therefore \frac{a}{a^{2}-d b^{2}}$ and $\frac{-b}{a^{2}-d b^{2}}$ are both rational numbers and atleast one of them is not zero.
$\therefore\left(\frac{a}{a^{2}-d b^{2}}\right)+\left(\frac{-b}{a^{2}-d b^{2}}\right) \sqrt{d}$ is a non-zero element of $Q[\sqrt{d}]$ and is multiplicative inverse of $a+b \sqrt{d}$.

Hence the given system is a field.
4. Let $K[\theta]$ be a ring of polynomials and let $a(\theta)$ and $b(\theta)$ be any two non zero elements of $K[\theta]$. Then
(a) $\operatorname{deg}[a(\theta)+b(\theta)] \leq \max [\operatorname{deg} a(\theta), \operatorname{deg} b(\theta)]=\max (n, m)$
(b) $\operatorname{deg}[a(\theta) b(\theta)] \leq \operatorname{deg} a(\theta)+\operatorname{deg} b(\theta)$ if $a(\theta) b(\theta) \neq 0$.

Solution. (a) Let $a(\theta)=a_{0}+a_{1} \theta+a_{2} \theta^{2}+\ldots+a_{n} \theta^{n}, a_{n} \neq 0$.
$b(\theta)=b_{0}+b_{1} \theta+b_{2} \theta^{2}+\ldots+b_{m} \theta^{m}, b_{m} \neq 0$ be two elements of $K[\theta]$
$\operatorname{deg} a(\theta)=n$ and $\operatorname{deg} b(\theta)=m$.
Now from the definition of sum of two polynomials, it is obvious that if $a(\theta)+b(\theta) \neq 0$ then,
$\operatorname{deg}(a(\theta)+b(\theta))= \begin{cases}\max (n, m), & \text { if } n \neq m ; \\ n, & \text { if } n=m \text { and } a_{n}+b_{m} \neq 0 ; \\ <n, & \text { if } n=m \text { and } a_{n}+b_{m}=0 .\end{cases}$
$\therefore \operatorname{deg}[a(\theta)+b(\theta)] \leq \max [\operatorname{deg} a(\theta), \operatorname{deg} b(\theta)]=\max (n, m)$.
(b) Again $a(\theta) b(\theta)=a_{0} b+\left(a_{0} b_{1}+a_{1} b_{0}\right) \theta+\ldots+a_{n} b_{m} \theta^{n+m}$

If $a(\theta) b(\theta) \neq 0$ then $a(\theta) b(\theta)$ has unique degree.
If $a_{n} b_{m} \neq 0$ then $\operatorname{deg}[a(\theta) b(\theta)]=n+m=\operatorname{deg} a(\theta)+\operatorname{deg} b(\theta)$.
If $a_{n} b_{m}=0$ then $\operatorname{deg}[a(\theta) b(\theta)]<n+m$.
$\therefore \operatorname{deg}[a(\theta) b(\theta)] \leq \operatorname{deg} a(\theta)+\operatorname{deg} b(\theta)$.
5. $K=\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{C}\right\}$, let $\alpha=a+\iota b$ and $\beta=c+\iota d$ where $a, b, c, d \in \mathbb{R}$.
$K=\left\{\left.\left(\begin{array}{cc}a+\iota b & c+\iota d \\ -(c-\iota d) & a-\iota b\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ is a skew field not a field.
Solution. Let $A=\left[\begin{array}{cc}a+\iota b & c+\iota d \\ -c+\iota d & a-\iota b\end{array}\right]$ and $B=\left[\begin{array}{cc}p+\iota q & r+\iota s \\ -r+\iota s & p-\iota q\end{array}\right]$

$$
A+B=\left[\begin{array}{cc}
(a+p)+\iota(b+q) & (c+r)+\iota(d+s) \\
-(c+r)+\iota(d+s) & (a+p)-\iota(b+q)
\end{array}\right] \in K
$$

Also, $A B=\left[\begin{array}{cc}(a+\iota b)(p+\iota q)+(c+\iota d)(-r+\iota s) & (a+\iota b)(r+\iota s)+(c+\iota d)(p-\iota q) \\ (-c+\iota d)(p+\iota q))+(a-\iota b)(-r+\iota s) & (-c+\iota d)(r+\iota s))+(a-\iota b)(p-\iota q)\end{array}\right]$

$$
=\left[\begin{array}{cc}
(a p-b q-c r-d s)+\iota(a q+b p+c s-d r) & (a r-b s+c p+d q)+\iota(a s+b r-c q+d p) \\
-(c p+d q+a r-b s)+i(d p-c q+a s+b r) & (-c r-d s+a p-b q)-i(c s-d r+a q+b p)
\end{array}\right]
$$

which is obviously an element of k.
$\therefore k$ is closed with respect to addition and multiplication.
Matrix addition is commutative as well as associative also.

Additive identity:- The zero matrix $\left[\begin{array}{cc}0+\iota 0 & 0+\iota 0 \\ -0+\iota 0 & 0-\iota 0\end{array}\right]$ is additive identity and so it is the zero element of k.
Additive inverse:- $A=\left[\begin{array}{cc}a+\iota b & c+\iota d \\ -c+\iota d & a-\iota b\end{array}\right] \in K$ then obviously $-A=\left[\begin{array}{cc}-a-\iota b & -c-\iota d \\ c-\iota d & -a+\iota b\end{array}\right] \in K$
\Rightarrow each element of k possesses additive inverse.
Further matrix multiplication is associative and distributive with respect to addition.
$\Rightarrow k$ is a ring with respect to addition and multiplication of matrices.
Existence of multiplicative identity:-

$$
\left[\begin{array}{cc}
1+\iota 0 & 0+\iota 0 \\
-0+\iota 0 & 1-\iota 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \in K
$$

Thus K is a ring with unity.
Existence of multiplicative inverse of each non-zero element of K.
Let $A=\left[\begin{array}{cc}a+\iota b & c+\iota d \\ -c+\iota d & a-\iota b\end{array}\right] \in K$ be any non-zero element i.e. a, b, c, d are not all equal to zero. $|A|=a^{2}+b^{2}+c^{2}+d^{2} \neq 0$
$\Rightarrow \quad A$ is non singular and is therefore inveritble.
Now $A^{-1}=\frac{1}{|A|} \operatorname{Adj} . A=\frac{1}{|A|}\left[\begin{array}{cc}a-\iota b & -c+\iota d \\ c-\iota d & a+\iota b\end{array}\right] \in K \therefore \quad K \quad$ is a skew field. Now K is not a field i.e. multiplication is not commutative for example let $A=\left[\begin{array}{cc}3+4 \iota & 5+6 \iota \\ -5+\iota 6 & 3-\iota 4\end{array}\right] \in K$ and $B=\left[\begin{array}{cc}1+\iota 0 & 1+\iota 0 \\ -1+\iota 0 & 1-\iota 0\end{array}\right] \in K$
then $A B=\left[\begin{array}{cc}-2-2 \iota & 8+10 \iota \\ -8+10 \iota & -2+2 \iota\end{array}\right]$ and $B A=\left[\begin{array}{cc}-2+10 \iota & 8+2 \iota \\ -8+2 \iota & -2-10 \iota\end{array}\right]$
$\therefore A B \neq B A \Rightarrow M$ is not a field.

