Topic 1

Modules

Throughout, R will denote an associate ring with identity $1 \neq 0$.

Definition 1. Let R be a ring. A left R-module is an additive abelian group M together with a function $R \times M \rightarrow M$, where (r, m) is mapped to $r m$, such that for every $r, s \in R$ and $m_{1}, m_{2} \in M:$
(M1) $\quad r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$
$(M 2) \quad(r+s) m_{1} \quad=r m_{1}+s m_{1}$
$(M 3) \quad r\left(s m_{1}\right) \quad=(r s) m_{1}$
(M4) $1 . m_{1}=m_{1}$, where 1 is the identity element of R.

A right R-module M is defined similarly via a function $M \times R \rightarrow R$ given by $(m, r) \rightarrow m r$ and satisfying obvious analogues of $(M 1)-(M 4)$. We will denote a left(right) R-module M by ${ }_{R} M$. A module may be regarded as a generalization of vector space. The scalar multiplication in the vector space by field elements is replaced in a module by multiplication by arbitrary ring elements.

Note: From now on, unless otherwise stated, R-module means a left R-module. Also it is understood that all theorems which hold for left R-module, also hold in a similar way for right R-modules.

Let R be a commutative ring. Then it is easy to check that any left R-module is also a right R-module by defining m.r $=r m$. Hence for commutative rings, we do not distinguish between left and right R-modules.

Definition 2. Let R and S be rings. Then an abelian group M is called an (R, S)-bimodule if M is a left R-module as well as a right S-module such that the two scalar multiplication satisfy $r(\mathrm{~ms})=(\mathrm{rm}) s$. We will denote an (R, S)-module by ${ }_{R} M_{S}$.

Suppose M is an R-module. Define a map θ from R to $\operatorname{End}(M)$, the ring of all group endomorphisms of M, by $r \mapsto f_{r}$, where $f_{r}(m)=r m \forall m \in M$. Now $\left(f_{r}+f_{s}\right)(m)=r m+s m=(r+s) m=f_{r+s}(m)$ and $f_{r s}(m)=(r s) m=r(s m)=f_{r} f_{s}(m) \forall m \in M$ implies that θ is a ring homomorphism. In fact R-modules
are completely determined by such ring homomorphisms. Suppose M is an abelian group and R is a ring such that there exists a ring homomorphism $\theta: R \longrightarrow \operatorname{End}(M)$. Then my defining $r m=\theta(r)(m)$, M becomes an R-module.

Elementary properties of an R-module M :

(i) $0 . m=0 \quad \forall m \in M$
(ii) $r .0=0 \quad \forall r \in R$
(iii) $(-r) m=-(r m)=r(-m) \quad \forall r \in R, m \in M$.

Here ' 0 ' written on the right side is the zero of M and 0 on the left side is the zero of R.

Proof. (i) $r m=(r+0) m=r m+0 m \Rightarrow 0 m=0$
(ii) $r m=r(m+0)=r m+r 0 \Rightarrow r 0=0$
(iii) $0=0 m=(r+(-r)) m=r m+(-r) m \Rightarrow(-r) m=-(r m)$

$$
0=r .0=r(m+(-m))=r m+r(-m) \Rightarrow r(-m)=-(r m) .
$$

Examples of Modules:

1. Let M be any additive abelian group. Then M is a left and a right \mathbb{Z}-module with respect to $n . m=m+m+\cdots+m \quad(n$-times $)$
$-n \cdot m=(-m)+(-m)+\cdots+(-m) \quad(n$-times $)$.
2. Let M_{1}, \ldots, M_{n} be R-modules and let $M=M_{1} \times \ldots \times M_{n}$ be the cartesian product of $M_{i}^{\prime} s$. Then M admits a natural R-module structure with respect to addition and multiplication given by

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \text { and } r\left(x_{1}, \ldots, x_{n}\right)=\left(r x_{1}, \ldots, r x_{n}\right)
$$

3. Let R be any ring. Then R is left as well as right R-module. For $r \in R, m \in R$ define $r m$ and $m r$ to be the product of r and m as elements of R. In fact R is an (R, R)-bimodule.
4. Every R-module M is a \mathbb{Z}-module, and hence is an (R, \mathbb{Z})-bimodule.
5. Let $M=\mathbb{M}_{m \times n}(R)=$ the set of all $m \times n$ matrices over a ring R. Then M becomes an R-module under the multiplication $r\left(a_{i j}\right)=\left(r a_{i j}\right) \quad \forall r \in R$. In particular, taking $m=1, M=R^{n}$ is an R-module.
6. Let S be a ring and R be its subring. Then S is an R-module with respect to the usual product in S. In particular the rings $R\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $R[[x]]$ are R-modules.
7. Let I be a left ideal of a ring R. Then I is a left R-module with respect to usual product in R. Furthermore, the quotient group (additive) R / I is an R-module with $r(s+I)=r s+I$.
8. Let A be an abelian group and let $\operatorname{End}(A)=R$ be the endomorphism ring of A. Then A is an R-module with $f a=f(a), f \in R, a \in A$.
9. Let R and S be rings and $\theta: R \rightarrow S$ be a ring homomorphism. Then every S-module M can be made into an R-module by defining $r m=\theta(r) m$. It is said that the R-module structure of M is given by pullback along θ.
